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Methodology for global geodetic time series estimation: 
A new tool for geodynamics 
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Abstract. A method of automatically combining geodetic network solutions to produce station 
coordinate time series with realistic computed errors has been developed and tested and is being 
applied on a weekly basis to Global Positioning System (GPS) global and regional networks of the 
International GPS Service. Our techniques include modified Helmert blocking, stochastic 
modeling to minimize frame bias, Monte Carlo simulation, variance component estimation, and 
multiparameter data snooping. An 18-month time series evaluation of 150 globally distributed 
stations demonstrates that our combined weekly solution is more complete, precise, and reliable 
than any contributing solution. Our method of attaching regional networks without perturbing the 
global network solution, rather than combining normal equations, improves the quality measures. 
The median RMS of station position residuals with respect to a constant velocity model is 2.4 mm 
in latitude, 3.0 mm in longitude, and 7.2 mm in height. Our solution has since been incorporated 
into the reference frame ITRF96 (International Terrestrial Reference Frame 1996), showing a 
RMS coordinate difference of 5.4 mm, the lowest of all contributing solutions. As an independent 
test, the RMS difference with the ITRF94 is 4.5 mm in horizontal and 8.1 mm in height. As a 
second external test, the station velocity solution was used to estimate plate tectonic Euler vectors, 
which were then compared with the NUVEL-1A model and found to differ at a level consistent 
with the computed errors. Given a few more years of data, our error model predicts solutions that 
will be sufficiently precise to rigorously test NUVEL-1A or its successors. 

1. Introduction 

Time series of geodetic network displacements derived from 
Global Positioning System (GPS) data have been used to 
investigate geophysical phenomena over distance scales of 1- 
10,000 km. Applications have included glaciology, hydrology, 
volcanology, seismology, tectonophysics, crustal loading, glacial 
rebound, Earth rotation, and global mass redistribution [Segall 
and Davis, 1997]. Understandably, networks have typically been 
implemented and analyzed specifically on a scale and density 
appropriate to the geophysical signals under investigation 
[Blewitt, 1993]. We present a methodology to produce a time 
series of solutions for a unified global network, which, in 
principle, can accommodate networks at all scales. A longer-term 
goal of this research is to enable the future production of 
"densifted global solutions" which can be used to investigate 
signals over all distance scales using a single self-consistent 
kinematic model. Apart from enabling the study of phenomena 
without artificial preselection of scale, the generation of such 
densifted global solutions is likely to increase the reliability of 
geodetic solutions and associated covariance matrices, and it will 
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improve the utility and consistency of archived solutions for 
future generations of Earth scientists. 

This contribution aims to present the geodetic methodology 
and demonstrate its potential as a new tool for geodynamics. It 
begins by explaining the method in some detail thus providing a 
suitable reference for further work that might utilize this method 
or for researchers who use our products and need a more 
definitive understanding of them. The method has been tested on 
an 18-month subset of data from the International GPS Service 

(IGS) global and regional networks (see httl•://igscb.il•l.nasa 
.gov/). The results demonstrate a high level of precision and 
reliability; the median RMS of three-dimensional station position 
residuals for 1-week solutions with respect to a linear motion 
model is shown to be < 5 mm. 

Since our coordinate solution was subsequently submitted to 
the International Earth Rotation Service (IERS) for incorporation 
into ITRF96 (International Terrestrial Reference Frame 1996), 
this paper describes preliminary assessment in comparison with 
ITRF94, a completely independent solution. IERS has published 
('http://lareg. ensg.ign. fr/ITRF/ITRF96-rep.html#results') their 
independent assessment of precision, showing our solution to 
have a coordinate RMS of 5.4 mm with respect to the final 
realization of ITRF96. According to IERS this is the smallest 
RMS of any contributing solution. 

Finally, to demonstrate the method's potential as a 
geophysical research tool, preliminary investigations were carried 
out on the estimation of global-scale geophysical parameters, 
including Euler vectors for tectonic plates. We conclude that 
geodetic resolution of plate kinematics should be sufficient to 
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rigorously test geological models such as NUVEL-1A [DeMets et 
al., 1994] within the next few years [Larson et al., 1997]. 

2. Methodology: Network Combination 

2.1. Geodetic Background 

We follow Mueller [1985] in using "Terrestrial Reference 

2.2. IGS Densification Pilot Project 

The IGS provides GPS orbitS, tracking data, and other GPS 
data products to meet the objectives of a wide range of scientific 
and engineering applications and studies. Our research has been 
carried out in the context of the IGS densification pilot project, 
initiated in September 1995 [Blewitt et al., 1993a; Beutler et al., 
1995; Zumberge and Liu, 1995]. One of the objectives of this 

System" (TRS) to mean the conventional theoretical definition of project was to produce a unified and consistent station coordinate 
the coordinate basis (i.e., the geodetic datum) and using solution on a weekly basis [Blewitt et al., 1995]. The success of 
"Terrestrial Reference Frame" (TRF) to mean a particular real- this pilot project has led to the start of the fully operational phase 
world implementation of the reference system by stating in January 1999. 
coordinates (positions and sometimes velocities) of ground While the emphasis of this paper is on the improvement in 
marks. in practice, accurate models of surface kinematics (e.g., solution quality that results from network combination 
due to tidal effects) are introduced into the TRS and are therefore methodology, network combination was initially seen as a 
embedded into the definition of coordinates. A TRS is essentially practical necessity to overcome the immense computational 
arbitrary and conveniently defined; a TRF is estimated through burden of processing the entire IGS network containing hundreds 
physical observation and hence can only be stated in statistical of stations. A distributed approach to estimating the weekly 
terms. Therefore kinematics must be interpreted within the polyhedron was therefore developed. The agencies contributing 
context of both the TRS definition and the TRF statistics. analysis results to the project are listed in Table 1. The jargon 

Various investigators have developed methods to estimate a terms, which are used in IGS to describe the various network 
free network TRF using a global network of permanent GPS solutions, are summarized in Table 2. Figure 1 explains the 
stations (known as a polyhedron network), without the use of a distributed processing approach schematically. The following 
priori information. [Heftin et al., 1992; Blewitt et al., 1992; and steps summarize this scheme: 
Herring et al., 1993]. Not only can we estimate the internal 1. Each IGS Analysis Center (AC) produces a global 
geometry of the network polyhedron, but also the evolution (with coordinate solution known as an "A network" every week. These 
respect to the TRF) of the Earth rotation vector (polar motion) solutions contain parameter vectors, a full covariance matrix, and 
[Lindqwister et al., 1992], and the Earth center of mass a full a priori covariance matrix. The latter allows us to remove a 
(geocenter) [ Vigue et al., 1992]. The evolution of the geocenter priori constraints to produce a free network solution. 
and the overall network scale are useful indicators of systematic 2. Each IGS Global Network Associate Analysis Center 
error (e.g., orbit dynamics, atmospheric delay, and antenna (GNAAC) produces a combined A network solution, known as a 
effects). Methods for estimating free network TRF kinematics "G network", every week. To exploit redundancy for improved 
from GPS data were soon thereafter demonstrated and applied to quality, only "global" stations may be included in the G network. 
crustal deformation [Blewitt et al., 1993b; and Bock et al., 1993], A global station is defined as a station appearing in at least three 
and atmospheric loading [van Darn et al., 1994], and global-scale AC solutions in the week in question; hence there are a few 
plate tectonics [Argus and Heftin, 1995]. nonglobal stations in most AC solutions, and the total number of 

Table 1. IGS Agencies participating in the IGS Densification Pilot Project Since Before 
February 1997 

Code a Type b Agency Name Location 

COD AC 

EMR AC 

ESA AC 

GFZ AC 

JPL AC 

NGS AC 

SIO 

EUR 

GIA 

GSI 

PGC 

SIR 

JPL 

MIT 

NCL 

AC 

RNAAC 

RNAAC 

RNAAC 

RNAAC 

RNAAC 

GNAAC 

GNAAC 

GNAAC 

Center for Orbit Determination in Europe 
Natural Resources Canada, Geodetic Surveys 
European Space Agency 
GeoForschungsZentrum 
Jet Propulsion Laboratory 
National Oceanic and Atmospheric 

Administration 

Scripps Institute of Oceanography 
European regional net from COD 
University of Alaska Geophysical Institute 
Geographical Survey Institute 
Pacific Geoscience Center 

Deutsches Geodaetisches Forschungsinstitut 
Jet Propulsion Laboratory 
Massachusetts Institute of Technology 
University of Newcastle upon Tyne 

Berne, Switzerland 

Ottawa, Ontario, Canada 

Darmstadt, Germany 
Potsdam, Germany 
Pasadena, California, United States 
Silver Spring, Maryland, United States 

San Diego, California, United States 
Berne, Switzerland 

Fairbanks, Alaska, United States 
Tsukuba, Japan 
Victoria, British Columbia, Canada 
Mt•nchen, Germany 
Pasadena, California, United States 
Cambridge, Massachusetts, United States 
Newcastle, England, United Kingdom 

aThese code names are official International GPS Service designations used in file names and data products. 
bAbbreviations are as follows: AC, Analysis Center; RNAAC, Regional Network Associate Analysis Center; 

GNAAC, Global Network Associate Analysis Center; GPS, Global Positioning System. 
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Table 2. Definition of Terms 

Network Type Producing Centre Type Description 

A network 

R network 

Analysis Center (AC) 

Regional Network Associate 
Analysis Center (RNAAC) 

G network Global Network Associate 

Analysis Center (GNAAC) 

P network GNAAC 

fundamental global network solution containing mostly global stations 

regional network solution with orbit constraints; contains the regional 
stations of a particular region plus at least three global stations in 
that region 

combination of global station estimates in A networks 

complete polyhedron including G network with R networks and 
nonglobal A network stations attached 

global stations varies from week to week. Note that this specific 
sense of the term "global" is intended throughout this paper. 

3. Each IGS Regional Network Associate Analysis Center 
(RNAAC) produces a regional coordinate solution known as an 
"R network" every week. The analysis performed by the 
RNAACs use the official IGS orbits, which have been produced 
by combining AC orbit solutions and aligning the orbits to ITRF. 
To enable network combination in the next step, each R network 
must include at least three global stations. All nonglobal stations 
are called "regional" stations. Note that our GNAAC also 
produces a pseudo R network, using stations that did not count as 
global stations in step 2. 

4. Each GNAAC then produces a complete IGS polyhedron 
network, known as the "P network," by combining the G network 
with the R networks every week. The use of IGS orbits by the 
RNAACs means that the R networks are oriented to ITRF, so 

removing a priori constraints is not as straightforward as for A 
networks. We address this problem through the stochastic model 
(see section 2.4). As will also be explained, we have developed a 
method of combination which is better described as an 

"attachment," where the G network is not allowed to be perturbed 
by the R networks. Therefore the stations in common between 
the G network and final P network have identical coordinates and 
covariances. 

5. The resulting G networks or P networks are available to 
geophysicists who require more advanced global geodetic control 
(e.g., for tide gauge benchmark monitoring). One objective of 
this paper is to help users to have a better understanding of these 
products. 

6. The resulting weekly G networks or P networks are further 
combined into a kinematic model, which is then submitted as an 
input into the next realization of ITRF. This methodology is 

Global Stations: 

At least 3 estimates 

of each 

lOS Combined Orbit 

A. network R. network User Analysis 

5 

G.network P-network 

Figure 1. The distributed polyhedron assembly scheme of the International GPS Service, showing the four types 
of network solution. A networks are produced by seven Analysis Centers (Table 1), which also produce orbit 
solutions, which are combined to produce the IGS combined orbit. R Networks are produced by four Regional 
Network Associate Analysis Centers (Table 1), using the combined orbit and at least three global stations. Our 
Global Network Associate Analysis Center analysis produces the G network and P network. A kinematic model is 
fit to the P network to produce the kP solution, which contributes to International Terrestrial Reference Frame 
realizations. 
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described and tested in this paper. The specific solution 
described here was subsequcptfy included in ITRF96. This is an 
indirect and more conventional route for users to access our 

products. 
The geodetic solutions are represented in SINEX (Software 

Independent Exchange) format, which was developed to facilitate 
the pilot project (but has since been adopted by other space 
geodetic techniques). One advantage of the SINEX folmat is that 
station information is documented, and hence the solutions can 
be corrected after the fact should this information require 
correction. This is especially important for correcting antenna 
heights and phase center offsets. 

Although the procedure above was developed as a general 
scheme [Blewitt et al., 1993a, 1995], our GNAAC methodology 
incorporates specific techniques, which will be discussed. Our 
techniques include modified Helmert blocking, stochastic 
modeling to minimize frame bias, Monte Carlo simulation, 
variance component estimation, and multiparameter outlier 
detection. 

2.3. Network Combination 

The aim of this contribution is to explore the potential for 
improving the precision and accuracy of station coordinates and 
kinematics through network combination analysis, which brings 
increased spatial coverage, redundancy, and the possibility for 
improved reliability through quality analysis techniques, 
including automatic outlier detection and variance component 
analysis. Methods for comparison and combination of geodetic 
network coordinate solutions have been introduced and 

developed by Kosters [1988], Kosters and Kok [1989], Boucher 
and Altamimi [1993]. This is an unusual least squares task in two 
respects. First, the input data types are the same as the output 
parameter types (that is, a 3-D position of each station at a stated 
epoch and optionally a constant 3-D velocity of each station). 
Second, the covariance matrices of the blocks of input data are 
fully populated (because each block is the output parameter set of 
an earlier least squares analysis). 

In our approach the reference system (datum) definition is 
dealt with via the stochastic model so our central functional 

model involves a simple reordering of parameters. Consider an 
input parameter list x (m entries) of a parameter vector x with 
covariance matrix Zx, which is to be related to another parameter 
list y (n entries). For notational convenience the matrix 

A (n x m) 
x-y 

is defined as the left-multiplying linear operator which 
reparameterizes x and Zx from list x to list y. The elements of 
this matrix are zero except for elements %. = 1, where member i 
of parameter list y is identified as the same parameter as member 
j of list x. Using overbars for the reparameterized arrays, 

•= A x and :E•= AZxA', 
x-y x-y x-y 

where Zx is an associated covariance, inverse covariance, or 
information matrix. A has the properties 

A :A' and A: A A . 
y-x x-y z-x y-x z-y 

From each input SINEX solution we can extract the estimate 
parameter vector x and its covariance matrix Zx, the a priori 
parameter vector z, and its covariance matrix Zz. It is then 

straightfroward to use a station catalogue (again, in SINEX 
format) to compute 

A and A 
X--C Z--C 

between the estimation parameter list x, the a priori parameter list 
z, and the catalogue parameter list c. 

2.4. Removing A Priori Constraints 

All nonminimal constraints on station coordinates stated in the 

SINEX file in the form of an a priori parameter vector and 
covariance matrix were removed using the principle of removal 
and addition of information from a normal equation system: 

Z• = (Z; • - A Z• • A + (C'C)-•C'Z;•C(C'C)-•) -• , (1) 
Z-X X-Z 

• = Z•(Z;'x- A Z;'z), (2) 
Z--X 

where the overbar denotes the resulting deconstrained 
solution. The third term on the right-hand side of (1) is required 
for A networks that exhibited near-singular normal equations 
when stated constraints were removed. The term (C'C)-•C ' is a 
generalized inverse of the linearized functional matrix C of three 
loose constraints w of 3-D network orientation, that is, the first 
three rows of (A3). 

The elements of the diagonal covariance matrix Zw are 
chosen in each case to give good matrix conditioning while not 
being too tight to cause numerical error. Because these extra 
constraints are minimal, they have no effect on the deconstrained 
parameters in (2). 

The A networks sense the geocentric origin and network scale, 
and this information was retained in the combined G network. 

Any orientation information in these networks is due to artificial 
constraints and was removed to prevent network distortion. In 
the case of R networks the ability to sense the geocenter and 
network scale depends on network size. Small R networks can 
be assumed to be insensitive to the geocenter, while large ones 
have some sensitivity. We assumed that no R network provides 
information of value on the origin or network scale; the G 
network origin is defined by the combination of A networks 
alone. Therefore in the R networks the linear combinations of 

parameters corresponding to all seven Helmert parameters (3-D 
origin, 3-D orientation and scale) were therefore assumed to be 
uninformative. This is reasonable because the reference system 
definition of the regional networks (especially small ones) comes 
largely from the IGS combined orbits, which, in turn, are 
positioned in the ITRF. The combined G network does not 
require this a priori information. 

Our approach is to effectively remove the artificial reference 
system definition by augmenting the deconstrained estimate 
covariance matrix such that the standard errors of the unobserved 

Helmert parameters become large. This is a loose minimal 
constraints approach which avoids introducing reference system 
parameters into the network combination functional model. The 
linear combinations of coordinates corresponding to the Helmert 
parameters are the rows of Bx in (A3). The covariance matrix of 
the deconstrained parameters is augmented to remove Helmert 
parameter constraints by either: 

Z• = Z• + C'ZwC, or (3) 

Z•: (Z•' ' ' ' ' _ ,v• C (CZ• C + Zw)-'C•') -• , (4) 
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where the curly overbar denotes the augmented deconstrained 
matrix. C is made up of the appropriate rows of B for the 
reference system parameters that are to be augmented (three 
orientations in the case of A networks, and all seven parameters 
in the case of R networks). Zw is the diagonal covariance matrix 
of the augmented parameters. In the terminology of Blewitt 
[1998] this is a "loosening transformation," where (3) is the 
covariance augmentation formulation, and (4) is the weight 
reduction formulation. Although the formulations are equivalent, 
each has its advantages depending on the computation involved. 
From the computation of (1), Z• and 7_4 • are both known, so by 
using both (3) and (4), Z• and Z•x • can both be computed 
without a further matrix inversion. Because the information 

being removed here is extrinsic to the network (i.e. the function 
C is orthogonal to the network observations), no parameter 
update is required. 

In A networks we find a wide range of stated and unstated 
constraints. Stated station constraints can be loose (10 m 
standard error) or tight (1 mm standard error). On removing 
these constraints from A networks, we would expect the 
deconstrained normal equations to have a rank deficiency of three 
(computationally, three very small eigenvalues) corresponding to 
the three degrees of freedom of the unobserved network 
orientation. However, some A networks include unstated 
constraints that make the normal equations quite regular with 
constraints removed, while others have the singular normals we 
would expect. These differences come from the different 
methods employed in network estimation software. Some A 
networks had unstated constraints only of X and Y orientation, 
not of Z, or vice versa. All these cases of stated and unstated 
constraint were handled by the deconstraint procedure. We must 
assume that A network unstated constraints are minimal (i.e. of 
orientation only); nonminimal unstated constraint cannot be 
distinguished from observation information. As long as this is 
the case, (1) and (2) are still valid (i.e., we can obtain the 
undistorted network except for certain known linear 
combinations corresponding to the equations of global 
orientation, which can be dealt with). 

2.5. Modified Helmeft Blocking Procedure 

The combination of A networks (to form the G network) and 
subsequent attachment of R networks (to form the P network) is 
accomplished by a procedure similar to Helmeft blocking but 
with important modifications we have developed. Wo/f[1978] 
summarizes the history of the Helmeft blocking method. The 
modifications are that (1) only A networks (not R networks) 
contribute to the estimation of "junction" stations that are in 
common to both an A network and R network and (2) only 
stations estimated by at least three A networks are allowed in the 
G network. This gives the combined G network the redundancy 
required to carry out variance component estimation and outlier 
detection, which enables a high-reliability primary reference 
frame. 

Because observations and parameters are the same quantity 
types (coordinates), the linear observation model is exact, making 
nominal parameter values unnecessary. There are n input 
components (A and R networks); for each component i we have 
observations xi with covariance submatrix Zx, and parameter 
list xi. Let the common (junction) parameter list be g. The local 
parameter list ui for each block contains {ui} = {x/} • {g}. We 
estimate the common parameters g and when required the block- 

by-block local parameters ui. The overall normal equation 
system for this estimation can be written as a stack of 
components, one for each G network: 

ß - Xl -Ul 

0 

symmetric 

[ x, ] 
! A Z• •x2 / 

/ 
/ / ß 

0 0 0 A Z• A' 
x• -u• x• -g 

A Z -• A' 0 0 )u z-• A' 12 

X2--U2 12 X2--U2 x -- 2 . x2--g 

0 ';. 0 52 -• A' 0 A Z -• A' A x• Xn--Un Xn Xn--Un Xn--Un Xn--g 

symmetric ..- symmetric •,A__gZ:• A' x x, -g 
_ 

Ul 

(s) 

Cooper [1987] shows that to efficiently solve such a sparse 
system, we can use 

( Zg: • o7-2Ni g: Zg• o7/2di, (6) 
i=1 i=1 

with residuals 

Vi: A g- xi Zv, = Zx,- A Zg A' , (7) 
g-x, g-x, g-x, 

where 

Ni = Ei- D•C•-IDi , di = bi - D'iC•-lai 

ai -= A Y',•lxi , bi -- A Z•xi 
Xt-U, t xt-g ' 

Ci • A Z -• A' 
X,--Ut Xt Xt--Ut Di-- A Z• • A' Xt--Ut t xt--g ' 

•.= A•IA• 
x,-g x,-g 

Here Ni and di are the reduced normal equation components 
for block i. The factors • applied in these equations are block 
variance components discussed below. The local parameters and 
their covariance submatrices are subsequently obtained when 
required by 

Ui: CT•ai- C7•Dig Zu, = C• -• + C•-•DiZgD'iC• q , (8) 

and the off-diagonal covariance submatrices of the solution are 

Zu, g = -C?IDiZg Z .... = CTXDiZgD)Cj I . (9) 

For every weekly epoch we obtain loose global A network 
solutions (ai, Z•, ) and similarly loose regional R networks (ri, 
Zr, ). The set of Helmerr blocks xi includes ai and ri. The 
loose G and P networks are estimated from the loose A and R 
networks as follows: 

1. A global parameter list g is written which includes stations 
estimated by three or more A networks. The local parameter list 
ui for each A network includes all the stations in that network 
not in g. The stacking procedure of (6) is used to give the G 
network estimate (i.e. the common parameters g of the Helmert 
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blocking procedure) using only :be A network contributions to below), we chose to perform only one update of variance 
the summation, that is, each xi -= ai components in each global network combination and to damp the 

2. Each R network (regional solution) is attached to the G update by 
network by means of the three or more G-stations included in the 
R network as junction stations. This is done by back substitution •.2,i+• = o•2,l(dsi2d - d + 1), (11) 
of the G network estimates of the junction stations into the R where the damping factor d =0.2. This reduces the effect of 
network by (5)-(9) where each xi--r,-. Hence the global stations outlying observations that can cause variance components to 
of the resulting combined P network are unaffected by the R fluctuate wildly; we preferred to deal with these by outlier 
networks. detection and removal. Setting d too close to unity can render 

3. The back substitution of R networks includes a pseudo R outlier detection impotent (since the outliers distort covariance 
network which is included to deal with the nonglobal A network scaling). In this application where we expect a constant scaling 
stations. This is a combination of A networks including only the factor for each AC, a highly damped approach is preferable. 
nonglobal stations and a core set of about 20 well-distributed 
global stations. The core stations act as the junction stations in 2.7. Monte Carlo Confidence Intervals 
attaching this R network to the P network in the same way as the 
real R networks. Any stations which appear in the pseudo R 
network and a real R network are deleted from the pseudo R 
network. 

This procedure follows that of a standard Helmert blocking 
solution of the A and R networks, except that the common 
parameter list does not include all the common parameters but 
only those that meet the global station requirements. Most 
importantly, the R networks do not contribute to the common 
parameter estimation. The approach can be thought of as 
equivalent to a simultaneous least squares estimation from all the 
data in the limit of large variances being ascribed to the R 
network junction station estimates. The result is that the G 
network estimate and its covariance matrix are determined only 
by the A networks, and this forms a first-order control network to 
which the regional components are attached. 

2.6. Variance Component Estimation 

To be statistically rigorous, variance components should only 
be applied after the null hypothesis (that the functional and 
stochastic models are correct) has been disproved. This is very 
difficult to do because the variance component probability 
distribution is unknown. We derived a 90% confidence interval 

by the Monte Carlo method, which could be used to solve this 
problem, although this was not done routinely in our weekly 
analysis. Analytic derivations of variance component density 
functions "are restricted to special applications, or they give only 
approximate results" [Koch, 1987b]. Bayesian methods have 
been developed by Koch [1987b, 1988] and Ou [ 1991 ]; these use 
numerical integration and approximations. 

To determine the variance component confidence intervals by 
Monte Carlo, we generated 100 sets of pseudorandomly 
deviating A network coordinates. These coordinate sets were 
generated such that the mean coordinate values are those of a real 
set of A networks from a typical week, and the deviations follow 
the multivariate normal distribution defined by the real A 

The scaling factors o72/ applied to the AC global networks in networks' covariance matrices. Equations (6), (7) and (10) were 
(6) are required because the relative scaling of the input A iterated 4 times to ensure convergence of the variance component 
network covariance matrices is not correct. We determined these estimation. The combined global network residuals are then due 
factors by a damped variance component estimation technique. entirely to the pseudorandom behavior of the simulated 
The scaling factor for each AC in any week i was that determined observations (i.e. the null hypothesis is fulfilled a priori and we 
in week i-1. In week i the factor was updated based on the know the true variance components are unity). Table 3 gives the 
residuals (7) of each AC global network. We found that the results, including the 90% confidence interval of each variance 
classical Helmeft method of computing variance and covariance component. 
components [Koch, 1987a; Grafarend and Schaffrin, 1979] is not 

useful in practice for the following reasons: (1) the full 2.8. Iterative Data Snooping 
covariance matrix of observations is inverted, which is 
unnecessary because our observation blocks are uncorrelated; and Two blunder types were repeatedly found in the A and R 
(2) negative variance components can arise, which are networks during the pilot project: (1) reduction of the 
meaningless and prevent convergence of the solution. Instead, observation point to the monument using an incorrect eccentricity 
we used the following well-behaved nonnegative algorithm vector (i.e., getting the antenna height wrong); (2) 
(derived from expressions given by Sahin et al. [1992]): misidentification of the antenna with another GPS station at the 

same site. Some station antenna heights were poorly reported in 
^! l ^ 

s.2._ v,.Z•, vi this early stage of the IGS project. Following the combined G - , ,,• ,,•, (10) network estimation, we used the alternative hypothesis ,,: tr(Zaøz,]N,') o;,:2,y+, = •.2 .s.2. mi- 

where m• is the number of observations in block i and j is the 0 0 0 1 0 0 

iteration counter. Equation (10) can be understood as a partition C= 00 0 0 0 ... 0 1 0 ... 0 (12) of the total sum of squares of the residuals. The numerator is the 0 0 0 0 1 
weighted sum of squares of residuals of the ith observation block, 
and the denominator is the redundancy number of that in (A8) and (A9) to compute marginally detectable errors 
observation block. (MDEs) [Baarda, 1968] and apply an iterative data snooping 

Equations (6), (7), and (10) could be iterated from o-• = 1 until (outlier testing) to each A network station position estimate 
s• • 1. However, because our aim was to determine a slowly (coordinate triplet) in turn against a chi-square distribution with 
evolving scaling factor for each AC over many weeks of analysis three degrees of freedom (following Kosters and Kok [1989]). C 
in the context of outlier detection and removal (see section 2.8 is zero except for the triplet block corresponding to the ith station 
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Table 3. Summary of Monte Carlo Variance Component Confidence Intervals 

Week 0862 A Networks COD EMR ESA GFZ JPL SIO 

Number of stations 60 30 52 50 5 :. 59 

A priori scale factor 49.79 13.82 22.37 34.31 30.24 2.888 
Network degrees of freedom 124.7 79.73 146.1 109.1 124.0 124.4 
Mean of o '2 1.01 1.00 1.01 1.02 0.99 1.01 

Standard error of o- 2 0.15 0.15 0.12 0.19 0.13 0.14 

5th percentile 0.77 0.77 0.83 0.73 0.82 0.78 
50th percentile 1.01 1.00 0.99 1.01 0.97 1.02 

95th percentile 1.24 1.20 1.22 1.36 1.21 1.21 

estimate. The station estimate with the largest T value in (A9) is 
discarded, and the combined G network estimation and outlier 
removal step are iterated until the largest T is below the 99.9% 
confidence critical value. If any one station is rejected from two 
A networks in the iterative process, it was entirely discarded from 
that week's G network. (These stations were those where ACs 
apply different antenna height reductions; we did not attempt to 
manually correct these errors). The variance component updates 
(10) for the following week's analysis were then computed from 
the final G network iteration. 

2.9. Monte Carlo Testing of Iterative Data Snooping 

It is not clear what the MDE and noncentrality parameter in 
(A7) mean in the context of iterative data snooping, because we 
only test the station estimate with the largest value of T at each 
iteration, and the input data may have multiple outliers. Iterative 
data snooping is therefore a practical technique without much 
theoretical justification. We ran a Monte Carlo test to determine 
the probability of correct action, type I errors (finding an outlier 
when none exists), or type II errors (not finding an actual outlier) 
in the first iteration. As before, for each test 100 sets of 
pseudorandom data were generated such that the mean parameter 
values are those of a real set of A networks from a typical week, 
and the random deviations follow the multivariate normal 

distribution defined by the real A networks' covariance matrices. 
We then inserted outliers of size 2/3 MDE, 1 MDE, or 3/2 MDE 
in zero, one, or two input estimates of a single station, computed 
(6) and (7), and carried out the first iteration of the outlier 

detection test at a confidence level of 99.9%. The results are 
shown in Table 4. 

It is perhaps surprising that with a confidence level of 99.9%, 
the test will reject an observation one time in four when no 
outliers or other model errors are present! The iteration then 
continues, so the test will reject two observations one time in 
sixteen, etc. This result should be borne in mind by anybody 
using this type of test blindly. If a single outlier is caught 
successfully, we return to the no-outliers situation on the second 
iteration, so the probability of catching one outlier of 1 MDE size 
and then stopping is 0.56. Similarly, the probability of catching 
two outliers of 1 MDE size and then stopping is 0.48. This gives 
some insight into what MDE means in practice. Monte-Carlo 
testing could be extended to many-outlier situations. 

3. Methodology: Network Kinematics 
and Plate Tectonics 

3.1. Estimation of Kinematic Network Solutions 

From the time series of weekly polyhedron solutions we 
estimated a kinematic network solution which includes a 

reference epoch position and a constant velocity for each station. 
A four dimensional Terrestrial Reference System has 14 degrees 
of freedom, including the seven usual Helmert parameters plus 
their time derivatives. Let the kinematic parameter vector k be 
defined as in (A4). The linear model for the epoch t observation 
block xt is 

Table 4. Summary of Monte Carlo Tests of Iterative Outlier Detection 

Outlier Number 

Size of 

Outliers 

Probability of First Iteration Test Decision Being 

Correct Type II Error Only Type I and II Error 

None 0 0.75 0 0.25 a 

2/3 MDE 1 0.23 0.59 0.19 

1 MDE 1 0.75 0.16 0.09 

3/2 MDE 1 1.00 0.00 0.00 

2/3 MDE 2 0.35 0.38 0.27 

1 MDE 2 0.86 0.09 0.05 

3/2 MDE 2 1.00 0.00 0.00 

MDE is marginally detectable error. 
aln this case, it is Type I error only since there is no actual outlier. 
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x,: [Ao ix:-*xo + v, (13) •(y-x) -' Y"y + Y"x, (21 a) 

and the normal equation component for the ith such block is 

1 t I 1 [ A 2;: A , A Y•. A (t-to)] 
..--[ Xi--X0 • X•--X0 ..} X•--Xo X•--X0 [ 

kxi-x0 ' Xi--X0 I Xi--X0 t X•--X0 I 

1 1 [" AE- A ] 
/ x,-xo X,x,_xo / x ' d,: i / ,, 
kX•-Xo t x•-xo j 

the solution of which is 

Zk = N i k = Zk Z di. (15) 
i=1 

Because the 3-D orientation and hence the 3-D orientation rate 

of the kinematic network solution were loosely constrained, we 
introduced minimal a priori constraints of these TRS parameters. 
We used an a priori kinematic solution x^v to provide the 
coordinates used in the constraint function C, which in this case 
consists of rows 1-3 and 8-10 of Bv in (A7). The additional a 
priori normal equation component is 

•^• = [•)•az•la ' a'] a^•=0 (16) - kav-k • 

where Zh is diagonal, containing the required variances of the 
six cons•ained orientation parameters. This a priori block could 
also be used to constrain the kinematic ne•ork scale rate to zero. 

3.2. Estimation of Epoch and Kinematic Datum 
Transformations 

Strictly speaking, a datum transformation is a function that 
changes the external geometry of a network coordinate set, 
leaving all estimable quantities unchanged. For epoch networks, 
subsets of the seven parameters (A2) are included; for kinematic 
networks, subsets of the 14 parameters (A5) are included. To 
estimate such a transformation between network solutions x and 

y parametcrized like (A1) or (A4), the observation model is 

y + v = t + sRx (17) 

where t is a translation vector, R is a rotation matrix, s is a scale 
parameter or vector, and v is a vector of Helmert residuals 
parameterized as for x and y. All the vectors in (17) are 
partitioned into coordinate triplets (or sextuplets for kinematic 
networks), and the rotation matrix is a triplet (sextuplet) block 
diagonal. The model is linearized assuming that the parameters 
are small (this method is only useful for determining small 
reference frame differences) giving the Jacobean matrix (A3) for 
epoch networks or (A6) for kinematic networks. The least 
squares solution is iterative from a first guess ho (usually 
h0 = 0 ), converging in j iterations: 

Ahi = (B'iWBi)-IB'iW(y - •i), (18) 

J 

fi = ho + ZAh, E• = (B•/WBj)-', (19) 
i=1 

•r = •j _ y Z• = Z(y-x) -- BiZfiB•/. (20) 

The covariance matrix of observations in this least squares 
process is one of the following possibilities: 

Z(y-x) -- Ex -- Zy, (21 b) 

Z(y-x) = Zx, (21 c) 

where in (2 l a) x and y are independent solutions, in (21 b) y is a 
least squares combination of solutions including x, and in (21 c) y 
is considered a correct reference network (Cross [1983] gives 
derivations of these equations). The first two cases are both used 
in this work, (1) for comparing A networks and R networks, and 
(2) for comparing the G network with A networks. 

3.3. Estimation of Tectonic Plate Euler Vectors 

Rigid tectonic plate motion can be described by Euler vectors 
which are simply angular velocities. From the correlated station 
velocities of the kinematic solution we estimated absolute Euler 

vectors for seven major tectonic plates by ascribing most stations 
in the kinematic reference frame solution to one of these tectonic 

plates and discarding the remainder. Under the absolute Euler 
vector model the velocity vector vi of each station i (of m 
stations) on plate A (ofp plates) with known geocentric position 
is described by a geocentric rotation about the 3-D Euler vector 

S'2•=[Xn^ Yn• Zm] 

plus a residual velocity •,., which gives a linearized observation 
model of the form v = Dg't + •. This equation is solved by least 
squares in the usual way. 

The absolute Euler vectors are correlated because the velocity 
parameters are correlated. This must be taken into account when 
deriving relative Euler vectors from pairs of absolute vectors. 
Relative Euler vectors are independent of a priori constraints on 
the kinematic TRS orientation rate. A relative Euler vector 

between two plates A and B is defined as 
^fib =-BFt^ =g'tB-g't^. To better visualize Euler vectors, we 
express the Cartesian vector components in terms of latitude, 
longitude, and rotation rate (obtained by the usual geodetic 
formulas). The horizontal error ellipse and standard error of the 
rotation rate are extracted from the triplet covariance matrix of 
each Euler vector. 

4. Testing and Results 

4.1. Input Data 

We use the first 18 months of weekly SINEX networks made 
available in the IGS densification pilot project with at least four 
IGS Analysis Centers participating; that is, August 20 1995, to 
February 22 1997 (GPS weeks 815-893). The time series graphs 
use GPS week as the time unit. See Beutler and Brockmann 

[1993], Kouba [1993], Zumberge et al. [1995, 1996, and 1997] 
for individual descriptions of the work of these agencies. The 
agencies are referred to by their three-character code names 
(Table 2). Weekly A network SINEX files from COD, EMR, 
GFZ and JPL were available from the start of the series. SIO is 

included from November 1, 1995 (GPS week 0825) and ESA is 
included from December 28, 1995 (GPS week 0839). The 
National Geodetic Survey began producing weekly SINEX files 
in GPS week 0898, and although their solutions are not used 
here, they have since been included in Newcastle's operational 
analysis. Figure 2 shows the number of stations estimated in the 
A networks during the period studied here. 
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Figure 2. Number of stations appearing in n A networks, for n 
from >-1 to >=6, over the period of the experiment. Here n>-3 
is the defining requirement for a global station, so the bold curve 
shows the number of stations in the G network in each week. 

The steps in weeks 0825 and 0839 are the introduction of ACs 
SIC) and ESA. 

Weekly A network SINEX files from all these ACs were 
obtained from the IGS global data center, the Crustal Dynamics 
Data Information Service (see http://cddisa. gsfc.nasa. gov/) at 
NASA Goddard Space Flight Center. Each SINEX file was 
processed by matching each station against a SINEX format 
station catalogue that contains details of all IGS stations, 
including receiver and antenna types and antenna heights. Any 
discrepancies between each input SINEX file and the catalogue 
were automatically reported. The catalogue also provides unique 
parameter reference numbers for each station by means of which 
common station subsets in different solutions are known. 

period. Therefore our results demonstrate principles using pilot 
project data; they are not a definitive analysis. 

4.2. G network Estimation 

Figure 3 shows the variance components of the ACs as they 
evolved over the 18-month time series under the damped 
variance component estimation approach (11), with d = 0.2 to 
allow long-term changes in AC scale factors but to prevent rapid 
fluctuations. With the exception of GFZ the components in 
Figure 4 show well-behaved slow evolution over time. The 
covariance matrix scaling of GFZ appears to be in increasingly 
worse agreement with its G network residuals from week 0840 
onward. Residual statistics showed that this was due to a 

changing scaling of the A network covariance matrix for an 
unknown reason, not to any deterioration in the quality of the 
GFZ network solution. We also tested fixed AC scale factors and 

found a marginal improvement in station repeatability using 
evolving scale factors. 

Figure 4 shows the number of A network station estimates 
from each AC deleted each week by the iterative data-snooping 
procedure (A9) with (12) operating at the 99.9% confidence 
level. The dotted curve indicates 5% of the total number of A 

network station estimates (which are the observations of the G 
network estimation), showing that typically 2-3% of input data 
was discarded by the data snooping process, occasionally rising 
to 5-6%. The reasons for the trends present in Figures 3 and 4 
are unknown. Figure 5 shows the number of weeks in the series 
that each station was rejected from at least one A network 
(ordered from least to most rejections). The stations with many 
rejections are generally those with many antenna height blunders 
in AC A-SINEX files. 

R networks are included in the polyhedra from the start of 4.3. Precision Assessment of Network Time Series 
RNAAC involvement on July 1 1996 (GPS week 860), until the Before looking at the time series results relative to kinematic 
end of the series. Weekly RNAAC SINEX files from EUR, GSI, solutions, we show a very simple and intuitive measure to assess 
SIR and PGC were obtained from the CDDIS. the precision of the A, R, G, and P networks in Figure 6. Each 

Of the RNAACs, we concentrate on EUR and GSI which each plot shows for each pair f stations the RMS of the difference in 
submitted a full series of problem-free weekly solutions over this baseline length between consecutive weekly estimates across the 
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Figure 3. Evolving Analysis Center variance components under damped variance component estimation. 
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Figure 4. Number of A ne•ork station estimates iteratively rejected each week by multiparameter data snooping. 

whole time series, plotted against baseline length. Considering 
only baseline lengths and only pairs of consecutive weeks is a 
simple way of removing artifacts of reference system definition 
and tectonic motion. The trail of dots on the outskirts of the ? 

network plot in Figure 6 is due to the noisy baselines between 
regional stations in different R networks. 

4.4. Kinematic Comparison of Networks 

If the G network methodology we have described is useful and 
the claims of high reliability are justified, we should be able to 
show that the quality of the G network is superior to that of any 
A network in terms of long-term station position estimate 
repeatability. This is hinted at by Figure 6, but our main 
demonstration uses kinematic residual series (as used by, e.g., 
van Dam et al. [1994] and Argus and Heftin [1995]). Kinematic 
residuals are just a way of removing the effects of TRS 
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Figure 5. Number of weeks in series 0815-0889 from which 
each global station was rejected from one or all A networks. The 
most frequently failing stations are named; these usually had 
various antenna height values among the ACs. 

differences and tectonic motion in order to compare time series of 
station position solutions. 

We estimated a separate kinematic solution from each 18- 
month time series of loosely constrained A networks and the G 
network. Only those stations appearing in at least 20 members of 
the epoch solution series were included in the kinematic 
estimation. Exactly the same procedure was used to obtain the 
various A networks' and the G network's kinematic solution, and 
no outlier removal or solution iteration was performed. For each 
network series, seven-parameter Helmert transformations were 
estimated between each epoch network, and the kinematic 
solution was mapped to that epoch to obtain kinematic residual 
series for each A network and G network. These were expressed 
in local vertical, north, and east coordinates for each station. 
Owing to lack of space we do not show the kinematic residual 
series of individual stations. We show summaries of these series 

using different RMS statistics in Figure 7, Table 5, and Figure 8. 
Figure 7 summarizes the time series of weekly RMS kinematic 

residual for each A network and the G network in terms of 

horizontal and vertical components. The G network is clearly 
superior to any A network, most of which suffer from spikes in 
the RMS kinematic residuals. Although the G network is simply 
a combination of the A networks, the outlier detection and 
removal method is effective in removing these spikes. 

Table 5 shows the RMS of the Helmert transformation 

translation (second through fifth columns) and scale (sixth 
column) parameters across the time series with respect to the 
mapped kinematic solution for each A network and the G 
network. This is a measure of the repeatability of the geocenter 
and network scale measurements. The G network is equal to the 
best A network on the RMS 3-D translation parameter and is 
considerably better than any A network on the RMS scale 
parameter. The severnth and eighth columns of Table 5 present 
the summary RMS of the time series in Figure 7. 

We computed the RMS of kinematic residuals for each station 
in each A network series. Figure 8 shows ordered plots of the 
station-by-station RMS kinematic residual statistic in the vertical, 
north, and east components for the six A network series and the 
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Figure 6. The Y axes represent baseline repeatability (centimetres), and X axes represent baseline length 
(thousands of kilometres). The plots show simple baseline repeatability in six A network series, three R network 
series, and the G network and P network series over 18 months. For each pair of stations, RMS discrepancy 
between pairs of consecutive weeks is plotted against distance between stations. 

G network over 18 months. By arranging the stations in 
ascending order of the statistic and using "station set percentile" 
as the horizontal axis, we see comparative cumulative 
distributions of this statistic for each A network and the G 

network. The RMS residual of the median station is 7.2 mm in 

height, 2.4 mm in latitude, and 3.0 mm in longitude. 
It is clear from Figure 8 that on this statistic the G network 

outperforms the best A network. Even though the G network is 
simply a combination of these six A networks, it is demonstrably 
more precise than any of them. This shows that bringing the 
various A networks together in a combined G network and using 
variance component estimation and outlier detection methods in 
the G network estimation is useful. This is our most important 
result in favor of the IGS distributed polyhedron assembly 
scheme. 

4.5. A Kinematic Polyhedron Solution 

We estimated a kinematic solution (station positions at a 
reference epoch plus constant station velocities) from the 18- 
month P network time series: we called this the kP network. 

Stations appearing in less than five weekly P networks were 
discarded. We do not show maps of station velocity vectors. 
Figure 9 shows an ordered plot of vertical station velocities with 
three standard deviation error bars in three categories: global 
stations appearing in at least 50 P networks over the 18-month 
period, regional stations of RNAAC EUR, and regional stations 
of RNAAC GSI. The stations in the second two categories have 
a maximum time series length of 33 weeks. Since all station 
vertical velocities are expected to be within 4-10 mm yr -•, this 
plot shows the limitations of the short time series used here for 
vertical analyses. 

We went on to estimate absolute Euler rotation vectors of 

seven major tectonic plates using the kP network station 
velocities as input data. We also applied the same method to the 
IGS stations listed in ITRF94 (using ITRF94 velocities) to obtain 
an Euler vector for each plate. Locations of ITRF94 stations are 
given by Boucher et al. [ 1996]. The kP network was aligned with 
ITRF94 by estimating and applying a 14-parameter datum 
transformation. This is required to allow direct comparison of 
the kP network with ITRF94 since absolute Euler vectors are not 
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Figure 7. The Y axes represent vertical and horizontal kinematic 
residual RMS (millimetres) for each weekly A network and the G 
network, and X axes represent Global Positioning System week. 

estimable quantities (without adopting some arbitrary kinematic 
datum, which we have carefully avoided). Table 6 gives the 
stations used on each plate, the RMS horizontal station velocity 
before fitting the Euler vectors, and the RMS •'esidual velocity 
after fitting the vector. This was done separately for our kP 
network velocities and for the ITRF94 velocities of the IGS 

stations listed in ITRF94. Because the Eurasian and North 

American plates are much more densely sampled than the others 
in the kP network, we used only a fraction of the kP network 
stations available for those two plates. For this simple analysis 
we assumed the Australian and Indian plates to be one rigid plate. 

We then looked at relative Euler vectors between pairs of the 
seven plates. We compared the relative Euler vector estimates of 
the kP network, ITRF94 GPS subset, and the NUVEL-1A 
geological model (DeMets et al. [1994] as quoted by McCarthy 
[1996]). Table 7 shows the magnitudes of vector differences 
between pairs of these three estimates for each pair of plates. The 
vector differences between the ITRF94 GPS subset and NUVEL- 

1A are in the range 0.042-0.224 ø Ma -•, with an average of 0.115 ø 
Ma -•. The differences between the 18-month kP network and 

NUVEL-1A are in the range 0.010-0.214 ø Ma -•, with an average 
of 0.111 ø Ma -•. The differences between the 18-month kP 

network and ITRF94 GPS subset are in the range 0.028-0.194 ø 
Ma -•, with an average of 0.118 ø Ma-'. This shows that our 
combined network, using only 18 months of data, is in agreement 
with the plate motions given by both ITRF94 and NUVEL-1A at 
the level of the difference between those two models. 

Interestingly, the equivalent values for the older NUVEL-1 
model [McCarthy, 1992] are 0.142 ø Ma -• between ITRF94 and 
NUVEL- 1; and 0.165 ø Ma -• between kP network and NUVEL- 1. 
This is clear evidence that the geomagnetic reversal timescale 
adjustment [DeMets et al., 1994] made between the two versions 
of the NUVEL model has brought it into better agreement with 
both the geodetic models examined here. The best agreement 
between the three sets of Euler pole estimates is for the Eurasia- 
North America pole, which is as we would expect since these two 
continents carry far more first-order geodetic stations than do 
other parts of the crust. 

4.6. Regional Networks: Attachment or Combination? 

To test the R network attachment method, we implemented an 
alternative combination method of all A networks and R 

Table 5. Repeatability of Weekly Helmert Parameters and Residuals 

Network 

RMS of Weekly Helmert Parameters RMS Residuals 

X, mm Y, mm Z, mm 3D •, mm Scale, ppb Vertical, mm Horizontal, mm 

G Net 8.1 11.4 22.0 26.0 0.23 5.2 3.0 

COD 7.4 9.6 23.0 26.0 0.40 7.0 4.1 

EMR 19.2 18.9 75.3 80.0 0.74 10.5 6.6 

ESA 16.5 26.4 59.3 61.8 1.55 18.2 9.8 

GFZ 24.9 40.4 56.3 73.6 0.45 8.7 8.4 

JPL 8.2 10.4 30.4 33.2 0.94 15.8 3.9 

SIO 10.5 32.0 45.9 56.9 0.48 11.1 5.9 

Helmert transformation parameters are estimated between each weekly epoch solution and the mapped 
kinematic solution 

aThree-dimensional vector length of X, Y, and Z parameters. 



DAVIES AND BLEWITT: GLOBAL GEODETIC TIME SERIES ESTIMATION 11,095 

(a) Up RMS (mm) 

ß 

+ 

o 

+ 

+ 

4- x7 
+ 

+ 

i i i i i 

0 20 40 60 80 100 

station set percentile 

(b) Latitude RMS (mm) 

ß G-NET 

[] COD 

o EMR 

+ ESA 

•' GFZ 

ß JPL 

ß SIO 

v +; 

.63 O 
[] ß 

ß 

i i i i i 

20 40 60 80 100 

station set percentile 

(c) Longitude RMS (mm) 

i i i i 

20 40 60 80 

station set percentile 

i 

lOO 

Figure 8. Ordered logarithmic plots of RMS kinematic residual for each station in each time series solution in (a) 
height, (b) latitude, and (c) longitude. The stations are not identified but are arranged in ascending order of RMS 
kinematic residual so the cumulative distribution of station RMS kinematic residuals can clearly be seen for each 
contributing A network and our resulting G network. The median RMS residual for our G network is 7.2 mm in 
height, 2.4 mm in latitude, and 3.0 mm in longitude. 

networks, using the series of evolving A network variance 
components previously determined in the G network estimation 
and leaving R network covariance matrices unchanged. We 
excluded those station observations that were excluded in 
iterative data snooping in the G network estimation. In Figure 10 
we show only R network stations, with separate ordered series for 
the global junction stations and regional stations of the EUR 
(European) and GS! (Japanese) regional networks. This shows 
that regional station horizontal repeatability is improved by these 
networks being attached to the G network rather than combined 
with it. This is especially true of the GSI R network. We also 

see that the repeatability of the global junction stations is slightly 
degraded by allowing them to be influenced by R networks in the 
combination method. 

4.7. Are Scale and Geocenter Rate Differences Significant? 

Both network scale and geocenter are estimable quantities of 
the A, G, and P networks. We used the methods of Teunissen 
[1986] and Kosters and Kok [1989] to assess the statistical 
significance of the scale (at 1996.0), 3-D translation (at 1996.0), 
scale rate, and 3-D translation rate parameters between kinematic 
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Figure 9. Ordered plots of station vertical velocity for three station subsets: (1) global stations occurring in at least 
50 P networks, (2) EUR regionals, (3) GS! regionals. Error bars show three standard error confidence intervals. 

A networks and the kinematic G network and similarly between 
the kinematic P network and ITRF94 (Tables 8a and 8b). The 
statistical test uses the general hypothesis test (A9) with the 
appropriate rows of (A6) giving the C matrix. The conclusion is 
that there are statistically significant differences between A 
networks and the G network in 3-D translation at 1996.0, 
network scale at 1996.0, and 3-D translation rate, but not in scale 
rate (except in one case). There are significant differences 
between the kP network and ITRF94 in 3-D translation at 1996.0, 
3-D translation rate, and scale rate, but not in scale at 1996.0. 

5. Conclusions 

5.1. Summary 

The weekly IGS polyhedron assembled by the GNAAC 
procedure developed here as part of the IGS distributed 

processing pilot project is superior to the global GPS network 
solution of any individual IGS Analysis Center. The polyhedron 
TRF is suitable for precise surveying and geedynamics 
applications requiring global precision, offering weekly 
reobservation and high worldwide GPS coverage. Compared to 
IGS AC weekly A networks, the polyhedron assembled here is 
more dense and inclusive, more precise (in terms of long-term 
repeatability of station positions and geecenter), more robust and 
reliable (in both statistical and organizational terms), and more 
easily extended, than any individual Analysis Center weekly 
solution. The IGS polyhedron assembled by distributed 
processing should therefore proceed as the standard weekly GPS 
terrestrial reference frame. 

The ACs that achieve better time series repeatabilities of 
station and geecenter positions are in closer agreement with each 
other in each weekly solution than they are with the ACs of poor 

Table 6. Statistics of Horizontal Velocities Residuals to Estimated Plate Motion Models 

Plate kP Network Stations RMS Velocity ITRF94 IGS Stations RMS Velocity' 

Number b Before Model, After Model, Number Before Model, After Model, 
mm yr -• mm yr -• mm yr -• mm yr -l 

Africa c 4 15 4 5.5 2 13.2 0.0 

Antarctic d 4 8.1 4.1 3 11.9 9.1 

Australia c 7 34.8 6.5 2 37.1 0.0 

Eurasia r 16 13.5 5.6 18 14.2 2.0 

North America g 15 10.2 2.9 15 10.5 2.8 

Pacific h 11 35.7 11.6 3 30.9 6.1 

South America I 8 9.6 4.5 4 10.4 5.0 

aThis is the subset of ITRF94 stations which are IGS GPS stations. All such stations were used (see Boucher et 
al. [1996] for details). 

bThis is the number of stations on each plate, each contributing two velocity components. The IGS four- 
character station names of the stations used is given below for each plate. 

CThe kP network stations used are HART, MALI, MASP, and SEY1. 
dThe kP network s;ations used are CAS1, DAV1, KERG, and OHIG. 
øThe kP network stations used are AUCK, COCO, DGAR, HOB2, PERT, TIDB, and YAR1. 
rThe kP network stations used are ANKR, BOR1, BRUS, KIRU, KIT3, KOSG, MADR, METS, NYAL, ONSA, 

POL2, POTS, SHAO, TAIW, TROM, and WTZR. 
gThe kP network stations used are ALBH, ALGO, BRMU, DRAO, FAIR, GOLD, KELY, MDO1, NLIB, RCM5, 

REYK, STJO, THU1, WES2, and YELL. 
hThe kP network stations used are CAT1, CHAT, CICE, HARV, JPLM, KOK2, KWJ1, MAC1, MKEA, MONP, 

and PAMA. 

iThe kP network stations used are ASC 1, AREQ, BOGT, BRAZ, FORT, KOUR, LPGS, and SANT. 
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Table 7. Magnitude of Relative Euler Vector Differences Between Kinematic Solutions 

Difference a Antarctic Australia Eurasia North Pacific 

America 

South 

Americ 

a 

Africa kP-ITRF 

ITRF- 

NUVEL 

kP-NUVEL 

Antarctic kP-ITRF 

ITRF- 

NUVEL 

kP-NUVEL 

Australia kP-ITRF 

ITRF- 

NUVEL 

kP-NUVEL 

Eurasia kP-ITRF 

ITRF- 

NUVEL 

kP-NUVEL 

North America kP-ITRF 

ITRF- 

NUVEL 

kP-NUVEL 

Pacific kP-ITRF 

ITRF- 

NUVEL 

kP-NUVEL 

0.107 0.164 0.113 0.101 0.129 0.100 

0.096 0.049 0.091 0.042 0.158 0.161 

0.119 0.124 0.026 0.059 0.102 0.105 

0.102 0.089 0.065 0.194 0.102 

0.098 0.131 0.097 0.205 0.149 

0.010 0.104 0.093 0.109 0.214 

0.098 0.103 0.183 0.173 

0.050 0.016 0.167 0.113 

0.108 0.093 0.121 0.219 

0.028 0.136 0.089 

0.050 0.148 0.091 

0.041 0.109 0.117 

0.150 

0.152 

0.133 

0.072 

0.121 

0.152 

0.173 

0.224 

0.168 

All figures in the table are in units of degrees per million years. 
aFor each pair of plates the first row shows the difference between solutions ITRF94 and kP network; the second 

shows the difference between ITRF94 and NUVEL-1A; the third shows the difference between the kP network and 
NUVEL-1A. 

repeatability. This is a conclusion of the results presented here 
which is not obvious, and it is perhaps the most far-reaching 
conclusion of this work. It indicates that the differences in A 
networks in a single week are not due to constant systematic 
differences in AC analysis (which could lead to the AC with best 
repeatability being consistently distant from the others) but rather 

behave like random errors. This leads to the A networks with 

high repeatability being close to the least squares combination of 
the A networks (i.e., the G network) and hence achieving low 
estimated variance components and high influence over the G 
network. That these variance components are physically 
meaningful is shown by the result that the G network achieves 

25 
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combination, vertical 
combination, horizontal 
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Figure 10. Ordered plots of kP network kinematic residual RMS for R network station time series. Vertical and 
horizontal components are shown separately. 
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Table 8a. Significance of Epoch Transformation Parameters Between Kinematic Networks 

'I2•ree-Dimensional Translation at Epoch 1996.0 Scale at Epoch 1996.0 

Code Parameters, mm Significance Scale, ppb Significance 

X Y Z T 95% a T 95% a 

COD b 18.6 21.9 -9.5 473 yes 0.378 19.5 yes 
EMR b 36.2 - 113.6 18.9 224 yes -0.400 26.2 yes 
ESA b 9.7 72.1 12.7 901 yes 2.24 379 yes 
GFZ • -61.2 -33.9 6.4 400 yes 0.171 11.1 yes 
JPL • 15.5 29.5 26.6 212 yes -0.421 121 yes 
SIO • 12.2 4.6 38.6 158 yes -0.504 172 yes 
ITRF94 c -10.1 -32.1 32.9 36.5 yes 0.581 0.976 no 

a'Yes' in this column indicates that the parameter is significantly different from zero at the 95% confidence level. 
•Transformation is between the named kinematic A network and our kinematic G network. 
CTransformation is between the 52 stations common to ITRF94 and our kP network. 

superior long time series repeatability to any A network. This is 
not statistically preordained: improving long-term repeatability is 
not only a test of precision but is also a test of accuracy. The G 
network results agree better than the A networks with the 
simplest kinematic model (that residual crustal motions after 
removing modeled effects, such as solid Earth tides, etc., are 
linear in time with little stochastic variation). Testing agreement 
with this•model is therefore more than a statistical exercise; it 
demonstrates the potential for enhancing geophysical 
interpretation. This conclusion on its own justifies this work and 
the structure of the IGS densification project. 

A network station estimates have a typical overall redundancy 
of 78% in the G network combination (that is, an average 
redundancy number per coordinate triplet of 2.3 out of 3). The 
average coordinate triplet redundancy numbers for particular A 
networks vary between 1.6 and 2.8 after variance component 
scaling. Multiplicative variance components can be determined 
on weekly A network components of the G network combination 
with a typical 90% confidence interval of +20%. Typical vertical 
MDEs in the G network combination are 30-70 mm but large 

values up to 450 mm occur for high redundancy, low-precision 
station observations. The alignment of the largest MDE at a GPS 
station (vertical) with the most common blunder type (antenna 
height error) is a weakness of design in GPS station installations 
which could conceivably be avoided. 

On the basis of kinematic residual series and Helmert 

parameter series the G network shows much better station 
position repeatability and network scale repeatability than any A 
network and geocenter repeatability equal to the best A network. 
G network kinematic residual RMS at the median station is 7.2 

mm in the vertical and 2-3 mm in the horizontal. The range of 
station kinematic residual RMS is 3.4-19.3 mm in the vertical 

and 1.4-13.5 mm in the horizontal. Centimeter-level precision 
can therefore be claimed for all stations with respect to the global 
frame, and millimeter-level precision can be claimed for the best 
stations. 

There is weak evidence that the R network attachment method 

used gives superior time series repeatability to a combination 
method, and it is certainly to be preferred on theoretical grounds. 
The attachment method is preferred because it insulates the G 

Table 8b. Significance of Transformation Rate Parameters Between Kinematic Networks 

Three-Dimensional Translation Rate Scale Rate 

Code Parameters, mm yr -I Significance Scale, ppb Significance 
yr -1 

X Y Z T 95% d T 95% d 

COD b - 17.1 - 16.6 13.6 170 yes 0.198 2.11 no 
EMR • -41.5 11.2 77.9 78 yes 0.547 1.17 no 
ESA • -6.4 -16.1 -53.1 155 yes 2.03 49.2 yes 
GFZ • 70.8 -98.1 4.2 512 yes 0.022 4.12 no 
JPL • - 19.8 -22.6 -40.5 173 yes -0.084 6E-6 no 
SIO b - 16.6 9.3 - 19.6 93 yes 0.036 1.30 no 
ITRF94 • 10.5 26.4 -31.5 56 yes 0.411 9.94 yes 

Read 6E-6 as 6 x 10 -6 
a'Yes' in this column indicates that the parameter is significantly different from zero at the 95% confidence level. 
bTransformation is between the named kinematic A network and our kinematic G network. 
•Transformation is between the 52 stations common to ITRF94 and our kP network. 
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network from regional station groups. With regional networks 
attached, the kinematic polyhedron has a maximum station time 
series residual RMS of 27 mm vertical and 14 mm horizontal. 

The kinematic polyhedron shows significant translation, 
translation rate, and scale rate differences to ITRF94. The RMS 
agreement for the 52 stations common to the P network and 
ITRF94 at 1996.0 after removing the 14-parameter TRS 
difference is 8.1 mm vertical and 4.5 mm horizontal for 

positions, 4.8 mm vertical and 3.1 mm horizontal for velocities. 
Kinematic P network station velocities fit a seven-plate estimated 
Euler vector tectonic model with horizontal plate velocity 
residual RMS of 4.1-11.6 mm yr -•. The error ellipses of the 
estimated absolute Euler poles include the ITRF94 Euler pole for 
five of the seven plates. The magnitude of the difference in 
relative Euler vectors between our solution and the NUVEL-1A 

geological model is 0.041-0.324 ø Ma -• depending on the plate 
pair. 

5.2. Future Work 

The methodology described in this paper has since been 
applied to routine weekly IGS analysis since September 1995 and 
is continuing to incorporate stations from an ever-growing global 
network of IGS stations (currently approaching 200). The 
GNAAC has continued to operate at Newcastle since that time 
producing solutions. 

This paper has demonstrated that the geodetic resolution 
resulting from these accumulating GNAAC solutions should be 
sufficient to rigorously test geological models such as NUVEL- 
1A within the next few years. With increased spatial sampling 
we could test whether the rigid plate kinematic model is a viable 
concept to explain most of the data or whether more general 
kinematic models (e.g., spherical strain rate tensor models) will 
be more appropriate. These investigations will include study of 
the statistical character of kinematic solutions, which could bias 
the determination of station velocity. Ultimately, a more accurate 
and higher-resolution description of the kinematics will improve 
dynamic interpretation. 

To fully realize a GPS solution, which unifies all distance 
scales, would require the incorporation of data from thousands of 
stations, including dense regional arrays, and data from epoch 
campaigns. Since our method involves partitioning, it can readily 
use campaign solutions and regional network solutions as inputs. 
We therefore suggest that this approach be used as part of a 
coordinated effort to produce a GPS global geodetic master 
solution to enable more powerful geophysical analyses through 
improved coverage, resolution, precision, reliability, adherence to 
standards, and uniformity of documentation. Such an activity 
would also serve to improve the archives for use by future 
generations of Earth scientists. This work has formed the basis 
for such an undertaking, which at the time of writing is being 
planned as a working group activity within the University 
NAVSTAR (Navigation System by Timing And Ranging) 
Consortium. 

Appendix 

A1. Linear Mapping of Coordinate Triplets 
to Helmeft Parameters 

The linear function B in Ay = Bh for a small change Ay in a 
vector of coordinate triplets 

y =[[Xl )22 z3] '" [Xn Yn Zn]] t (A1) 

due to a vector of seven reference system parameters 

h=[rx ry rz stx ty tz I (A2) 
(rotations r and translations t with respect to the three axes and a 
scale factor s) is 

gx = 

0 Zl -y• 

- Zl 0 x• 

yl - x• 0 

x! yl z! 

1 o o 

o 1 o 

o o 1 

o 

- z2 o x2 

y2 - x2 0 

x2 y2 z2 

1 0 0 

0 1 0 

0 0 1 

I 

ß "l-Zn 0 Xn 
I 

I 

ß "IXn yn Zn 
ß .. 1 0 0 

ß .. 0 1 0 

ß .. 0 0 1 

(A3) 

If vector y also includes station velocities 

y =[[xl Yl z1] 0 '" [Xn Yn Zn]01[•l • •'11 '" [•n •2n •n]] t (A4) 

where the subscript 0 indicates that the position parameters refer 
to a certain arbitrary reference epoch, then h can include frame 
rate (time derivative) parameters: 

(A5) 

The Jacobean is then expanded to include the first derivative 
with respect to time of Bx, that is, 

Bx 0] B = , (A6) 
By Bx 

where 

gv = 

0 • -)3 
- 21 0 

)1 ---•1 0 

o o o 

o o o 

o o o 

0 •2 -)2 
- :•2 0 k2 

522 -/c2 0 

5c2 )2 •2 
o o o 

o o o 

o o o 

0 •n 
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(A7) 

A2. General Linear Hypothesis Testing 

Kosters and Kok [1989] discuss testing c-dimensional 
hypotheses (i.e., hypothesizing c additional model parameters) 
against chi-square distributions where the null hypothesis is the 
usual LS model. The (cxc) reliability matrix R of the 
alternative hypothesis is: 

R = (C'E•tEvE•tC)-I•, (AS) 

where C (m x c) is the linear design matrix of the hypothesized 
model error in terms of the observations and 20 is the 
noncentrality parameter defined by c together with the 
confidence level and power of the test (lookup tables for 20 are 
given by Baarda [ 1968]). The square roots of the eigenvalues of 
the reliability matrix and their eigenvectors are the magnitudes 
and directions, respectively, of the axes of the reliability 
hyperellipsoid, which contains the detectable error region. The 
hyperellipsoid surface is the marginally detectable error region. 
The chi-square test statistic is 

T = •/E•ICRCtZ•I• ' --• •c. (A9) 
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