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1 INTRODUCTION 

1.1 Scope 

NAPEOS (NAvigation Package for Earth Observation Satellites) is a portable navigation 
software system for Earth Observation satellite missions, providing orbit 
determination/prediction, manoeuvre-planning and parameter estimation capabilities and being 
able to process a wide variety of observation data including angles, range, range-rate, altimetry, 
satellite-to-satellite and Global Navigation Satellite System data. In particular, the following 
tracking systems are supported: GNSS (GPS, GLONASS, Galileo), satellite laser ranging 
(SLR), DORIS, PRARE, MPTS, and LCT ranging, 

NAPEOS supports within ESOC all the activities in the International GNSS Service (IGS), 
International DORIS Service (IDS), and the International Laser Ranging Service (ILRS), and 
other international scientific communities. It is also used for the routine Envisat-1 POD 
evaluation. 

NAPEOS will be operated through a graphical user interface. It will be portable to other UNIX 
environments (space agencies and other institutions). 

1.2 Purpose 

This document is a guide to the mathematical models and algorithms. Some models are taken 
form the literature without going further in the analysis of the theoretical assumptions. Other 
models have been developed from raw formulae, in order to fulfil the NAPEOS User 
Requirements. The description of algorithms and models reaches the software implementation 
level. However this is not a Detailed Design Document. 

 

1.3 Structure of the document 

This document is not structured ☺ 
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1.4 Reference Documents 

 
RD-1  F. Ceschino, J. Kuntzman. Numerical Solution of Initial Value Problems. 

Prentice-Hall, inc.1966 
RD-2  Peter Henrici. Discrete Variable Methods in Ordinary Differential Equations.1962 

RD-3  E. Fehlberg, NASA Technical Report TR R-287, 1968 

RD-4  E.B.Shanks, Math.Comp. 20 (1966) PP. 21 - 38. 

RD-5  B.D. Tapley et al. The Joint Gravity Model 3. Journal of Geophysical Research 

RD-6  Frank D. Stacey. Physics of the Earth. Brookfield Press, 1992 

RD-7  Dennis D. McCarthy and Gerard Petit (eds.) IERS Conventions (2003). IERS Technical 
note 32. Frankfurt am Main, Germany, 2004. 

RD-8  Jean-Pierre Carrou (ed). Spaceflight Dynamics. CNES. 1995 

RD-9  Loukis G. Agrotis. Determination of Satellite Orbits and the Global Positioning System, 
Thesis University of Nottingham, October 1984. 

RD-10  H. F. Fliegel, T. E. Gallini, E. R. Swift. Global Positioning System Radiation Force 
Model For Geodetic Applications. J. Geophys. Res., 97 

RD-11  S. J. Arnold, J. M. Dow. Models For Spacecraft Acceleration due to Earth Albedo and 
Infrared Radiation. OAD WP n. 265. June 1984 

RD-12  M. Rosengren, ERS-1 - An Earth Observer that Exactly Follows Its Chosen Path, ESA 
Bulletin No. 72, Nov 1992 

RD-13  M. Rosengren, The Orbit Control Of ERS-1, American Astronautical Society 
Publication, AAS-93-308, 1993 

RD-14  M. Rosengren, Improved Technique for Passive Eccentricity Control, American 
Astronautical Society Publication, AAS-89-155, 1989 

RD-15  L. Collatz, W. Wetterling, Optimization Problems, Springer-Verlag, 1975 

RD-16  E. Kreyszig. Advance Engineering Mathematics. John Wiley & Sons, inc. 1993 

RD-17  NAPEOS Technical Note 07. Target Definition and Orbit Control Feasibility. 

RD-18  Optima Manual, Numerical Optimisation Centre, Hatfield Polytechnic, July 1989. 
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RD-19  PPF/Envisat 1 Orbit Corrections. Matra Marconi Space. PPF-MMB-TN-0588. January 
1997  

RD-20  Introducción a la Dinámica Espacial, T. Elices, INTA, 1991 

RD-21  Spacecraft Attitude Determination and Control [Introduction to Estimation Theory, 
chapter 13.4, pp. 447-470], J. R. Wertz (ed.), Kluwer Academic Press, 1978. 

RD-22  Factorization Methods for Discrete Sequential Estimation, G. J. Bierman, Academic 
Press, 1977. 

RD-23  Applied Optimal Estimation, A. Gelb (ed.), The MIT Press, 1974. 

RD-24  Theory of Satellite Geodesy, W. M. Kaula, Blaisdell Publishing Company, 1966. 

RD-25  Fundamentals of Orbit Determination, B. D. Tapley, Lecture Notes in Earth Sciences No. 
25, Springer-Verlag, 1989. 

RD-26  Introduction to Estimation Theory, P. A. Pablos Chueca, GMVSA 2001/92, January 
1992. 

RD-27  Modifications to Programs BAHN and TRACK for Implementation of Orbit 
Determination Partial Derivatives by Numerical Integration of the Variational Equations, 
L. G. Agrotis, ESOC/OAD Software Description Document, December 1986. 

RD-28  Precise Orbit Integration for Near-Earth Satellites, P. Duque, ESOC/OAD, October 
1988. 

RD-29  GEODYN System Description - Volume I, Goddard Space Flight Center, Greenbelt, 
Maryland, August 1976.Classical Fifth-, Sixth-, Seventh- and Eighth-Order Runge-Kutta 
Formulas with Stepsize Control, E. Fehlberg, NASA Technical Report 287, 1968. 

RD-30  Spacecraft Attitude Determination and Control [Tracking ObservationsIntroduction to 
Estimation Theory, chapter 13.4, pp. 447-470],J. R. Wertz (ed.). Kluwer Academic 
Press, 1978. 

RD-31  Applied Optimal Estimation, A. Gelb (ed.), The MIT Press, 1974. 

RD-32  Ambigon, Blewitt 

RD-33  Ge, M., Improving carrier-phase ambiguity resolution in global GPS network solutions, 
M. Ge et al., Journal of Geodesy, Volume 79, numbers 1-3, June 2005. 

RD-34  Mervart, L., Ambiguity Resolution Techniques in Geodetic and Geodynamic 
Applications of the Global Positioning System, Band 53, Schweizerischen Geodätischen 
Kommission,Switzerland, 1995. 

RD-35  Brockmann, E., Combination of Solutions for Geodetic and Geodynamic Applications of 
the Global Positioning System (GPS), Band 55, Schweizerischen Geodätischen 
Kommission, Switzerland, 1996. 

RD-36  Springer, T.A., Modelling and Validating Orbits and Clocks Using the Global 
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Positioning System, Bern, Switzerland, 1999. 

RD-37  Saastamoinen, J., Atmospheric correction for the troposphere and stratosphere in radio 
ranging of satellites, in: Geophysical Monographs Series, 1972. 

RD-38  Marini, J.W., and C.W. Murray, correction of Laser Range Tracking Data for 
Atmospheric Refraction at Elevations Above 10 degrees, X-591-73-351, NASA GSFC, 
1973 

RD-39  Mendes, V.B., and E. C. Pavlis (2004), High-Accuracy Zenith Delay Prediction at 
Optical Wavelengths, Geophys. Res. Lett., 31, L14602, doi:10.1029/2004GL020308. 

RD-40  Niell AE (1996) Global Mapping Functions for the Atmosphere Delay at Radio 
Wavelength. Journal of Geoph. Research 101(B2), pp 3227-3246 

RD-41  Boehm, J., R. Heinkelmann, and H. Schuh (2007). Short note: A global model of 
pressure and temperature for geodetic applications. Journal of Geodesy, Vol. 81, No. 10, 
pp. 679-683. 

RD-42  Boehm J, AE Niell, P Tregoning, H Schuh (2006b) The Global Mapping Function 
(GMF): A new empirical mapping function based on data from numerical weather model 
data. Geophysical Research Letters, Vol. 33, L07304, doi:10.129/2005GL025546 

RD-43  Leick, A., GPS Satellite Surveying, Wiley, ISBN 0-471-30626-6. 

 

1.5 Acronyms 

ADD  Architectural Design Document 

DDD  Detailed Design Document 

GLONASS GLObal NAvigation Satellite System (Russia) 

GNSS  Global Navigation Satellite System 

GPS  Global Positioning System 

URD  User Requirement Document 
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2 NAPEOS STANDARDS 

The NAPEOS software relies heavily on the IERS Conventions 2003, RD-7 and follows these 
conventions very closely. However the IERS conventions do not provide a true standard as 
sometimes different options are given and allowed. So the purpose of this Chapter is to clearly 
identify and specify which part of the IERS Conventions 2003 was taken to clearly and 
unambiguously specify the standards used in NAPEOS. So to aid the reader the subsection of 
this Chapter follow the sections of the printed version of the IERS Conventions 2003. 

2.1 General Definitions and Numerical Standards 

NAPEOS follows the IERS Numerical standards as given in the Table 1.1.  

However, the values in this table correspond to a so-called zero-tide system. NAPEOS, and in 
general satellite based techniques, works with a tide-free system. Consequently the following 
values were adapted to account for the different definitions: 

Parameter IERS  (zero-tide) NAPEOS (tide-free) 

Ae: Equatorial Radius of the Earth  6378136.6 m 6378136.55 m 

1/f: Flattening factor of the Earth 298.25642 298.25769 

J2: Dynamical form factor 1.0826359 x 10-3 1.0826267 x 10-3 

GM: Gravitational constant 3.986004418 x 1014 m3/s-2 3.986004415 x 1014 m3/s-2 

 

The numerical standards in NAPEOS are handled by the module DBcb_Data. 

The values of the velocity of light and GM may be found in the NAPEOS physical constants 
and central databases, respectively. 

2.2 Conventional Celestial Reference System and Frame 

Not used in NAPEOS. 

2.3 Conventional Dynamical Realization of the ICRS 

NAPEOS uses the DE405 planetary ephemeris to compute the positions of the Earth, Sun, 
Moon, and planets. However, the mass ratio w.r.t. the Earth and the radius are taken from the 
NAPEOS physical constants database. Those values are, however, in line with the values as 
specified for the DE405 planetary ephemerides. 
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2.4 Conventional Terrestrial Reference System and Frame 

Besides by using the appropriate numerical standards the terrestrial reference frame is typically 
realised by using a set of well defined station coordinates. Currently, most of the tracking 
stations usually have coordinates given in the ITRF2005 reference frame. 

2.5 Transformation Between the Celestial and Terrestrial Systems 

NAPEOS strictly follows the IERS convention and used the IAU2000 transformation routines. 
The implemented method in NAPEOS is the method (1) which is the CEO-based 
transformations, using IAU 2000A precession-nutation. This uses the new (X, Y, s, Theta) 
transformation. 

2.6 Geopotential 

C21 and S21 computed based on mean pole offsets and the values of the adopted gravity field. 
Currently we typically use one of the latest Grace based gravity fields (e.g. EIGEN_GLO4) 

Effect of solid earth tides modelled in full using the anelastic Earth model. 

Solid Earth Pole tide accounted for as specified. 

Ocean tides fully implemented. Currently using FES2004 based on GRACEERL03. 

2.7 Displacements of Reference Points 

Ocean loading values are obtained from the ocean loading service at: 

http://www.oso.chalmers.se/~loading/ 

Currently we use the FES2004 with CMC corrections. Values have to be obtained for each site 
in the database. Missing values will cause a warning where needed. 

The ocean loading constituents are used together with the IERS software (hardisp.f) to compute 
the actual station displacements. 

Effect of solid Earth tides fully accounted for using the IERS software. In NAPEOS the 
software module is called tide2003.f. 

Atmospheric loading is currently NOT implemented. 

Deformation due to polar motion is implemented. 
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2.8 Tidal Variations in the Earth’s Rotation 

The tidal variations due to the Earth’s rotations are fully implemented using the IERS 
subroutine ortho_eop.f. Furthermore, UT1UTC can not be interpolated linear over time spans 
of several hours because of the short periodic effects. Typically all short periodic effects, all 
periods up to 35 days, are removed from the UT1UTC values giving the so-called UT1UTC 
reduced curve. These values can be linearly interpolated. For this reduction a subroutine called 
Ut1r2003 was written which using the values in Table 8.1 of the IERS Conventions (2003) for 
periods up to 35 days. 

 

2.9 Tropospheric Model 

For SLR the latest model from Pavlis and Mendes, RD-39, is implemented. But also the “old” 
Marinni Murray model, RD-38, is still available. 

For GNSS processing different models are available. 

Available options for obtaining apriori models for temperature and pressure 

• Take from the input observations (e.g. for SLR) 

• Standard atmosphere (one temperature, pressure and humidity for all points on and near 
the earth) 

• Height dependent standard atmosphere (to be implemented) 

• GPT model (based on gpt.f software from J. Boehm RD-41) 

 

Available options for computing a priori zenith delay: 

• Saastamoinen, RD-37 

 

Available options for mapping a priori zenith delay 

• Saastamoinen, RD-37 

• Niell mapping function (NMF, RD-40), wet or dry 

• Global mapping function (GMF, RD-42), wet/hydrostatic or dry 

 

Available options for mapping the estimated zenith delay 

• Niell mapping function (NMF, RD-40), wet or dry 

• Global mapping function (GMF, RD-42), wet/hydrostatic or dry 



 
NAPEOS 
Mathematical Models and Algorithms 

Document No:  

Issue/Rev. No: 

Date : 

Page : 

DOPS-SYS-TN-0100-OPS-GN 

1.0 

5-NOV-2009 

17 

 

 

 

 

2.10 General Relativistic Models for equations of motion 

Relativistic acceleration of a artificial Earth Satellite 

Lense-Thirring and de Sitter corrections ignored 

2.11 General Relativistic Models for Propagation 

The correction denoted for “laser ranging” is applied to all observations. 

For GPS also the relativistic effect on the satellite clocks due to the eccentricity of the satellite 
orbit is taken into account. 
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3 OBSERVATION EQUATIONS 

3.1 Definitions 

• Satellite position and velocity : satxr , satvr  

• Station position and velocity: staxr , stavr  

• Generically, emitter position and velocity : exr , evr  

• Generically, receiver position and velocity: rxr , rvr  

• Station to satellite relative position and velocity: xrΔ , vrΔ  

Satellite and station positions are always referred to as inertial. Only in the partial 
derivatives of observation with respect to station positions are referred to the Earth fixed 
reference frame. 

• Geometric range: xrΔ=ρ  

• Geometric range rate: 
dt
dρρ =&  

• Rotation matrix from inertial to topocentric and its time derivative: TT &,  

• Rotation matrix from inertial to Earth fixed and its time derivative: EE &,  

• Topocentric reference frame unit vectors and their time derivatives (east, north, up): 
),,( une rrr , ),,( une &r&r&r  

• Geometric observation: gy  

• Geometric observation corrected for time of flight delay, time bias and corrections : cy  

• Reference time correlation (multiplied by the Reference time correlation function 
Ψ defined below to give the time of flight observation correction): reftΔ  

• Time tag bias: tagtΔ , convention is tagUTCclock ttt Δ+= . This is the time bias of the element 
in the observation that sets the tag to the observation. If there are two elements in the 
observation, the other will be considered as tagnot _Δ  

• Measurement corrections (bias, transponder delay, atmospheric delay, etc., consistent 
with the type of observation, i.e. two way observation implies this is two way correction): 
ρΔ , ρ&Δ  
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• Emitter and receiver time biases: etΔ , rtΔ  (when the observation is referred to stations 
and satellites rather than emitter and receiver, these become stattΔ , sattΔ  as appropriate 
for the type of observation) 

• Speed of light: c  

• Derivative w.r.t. a vector: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂
∂
∂

=
∂
∂

3

2

1

x
y
x
y
x
y

x
y
r  

• Reference time tag correlation function:

timereceivetrackedistimeEvent,
timetransmittrackeristimeEvent,

timetrasmittrackedistimeEvent,
timereceivetrackeristimeEvent,

correctionreferencetimeeventNo,

0
1
0
1
0

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=Ψ
+

−
 

• Vector rotation convention:  

( ) ( )∑
=

⋅=⇒⋅=
n

j
jEFijiIEFIn XmxxMx

1

rrr

 , 
( )jcolumni,rowmijm ≡
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3.2 Ground station to satellite 1-Way Range (pseudo range) 

Geometric observation 

re xxx rrr
−=Δ ,  re vvv rrr

−=Δ  

xrΔ=ρ ,  
ρ

ρ xv rr
&

Δ⋅Δ
=  

ρ=gy  

Observation partial derivatives w.r.t. satellite and station position and velocity 

ρ
x

x
y

sat

g
r

r
Δ

=
∂

∂
, for emitter satellite 

ρ
x

x
y

sat

g
r

r
Δ

−=
∂

∂
, for receiver satellite 0=

∂

∂

sat

g

v
y
r  

ρ
xE

x
y

sta

g
r

r
Δ

−=
∂

∂
, for receiver station 

ρ
xE

x
y

sta

g
r

r
Δ

=
∂

∂
, for emitter station 0=

∂

∂

sta

g

v
y
r  

Observation partial derivative w.r.t. to time 

ρ&=
∂

∂

t
yg

 

Computed observation 

re
tagnotagg

gc c
xv

ct
y

yy ρρ
ρ ~~
~

_ Δ+Δ+
Δ⋅

−
Δ
⋅

∂

∂
−=

rr

, if observation is tagged at reception time 

re
tagnotagg

gc c
xv

ct
y

yy ρρ
ρ ~~
~

_ Δ+Δ+
Δ⋅

−
Δ
⋅

∂

∂
+=

rr

, if observation is tagged at emission time 

where: 

rrtag tc ρρ Δ+Δ=Δ~
, if observation is tagged at reception time 

eetag tc ρρ Δ−Δ=Δ~
, if observation is tagged at emission time 
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3.3 Ground station to satellite 2-Way Range 

Geometric observation 

re xxx rrr
−=Δ ,  re vvv rrr

−=Δ  

xrΔ=ρ ,  
ρ

ρ xv rr
&

Δ⋅Δ
=  

ρ2=gy  

Observation partial derivatives w.r.t. satellite and station position and velocity 

ρ
x

x
y

sat

g
r

r
Δ

=
∂

∂
2 , for emitter satellite 

ρ
x

x
y

sat

g
r

r
Δ

−=
∂

∂
2 , for receiver satellite 0=

∂

∂

sat

g

v
y
r  

ρ
xE

x
y

sta

g
r

r
Δ

−=
∂

∂
2 , for receiver station 

ρ
xE

x
y

sta

g
r

r
Δ

=
∂

∂
2 , for emitter station 0=

∂

∂

sta

g

v
y
r  

Observation partial derivative w.r.t. to time 

ρ&2=
∂

∂

t
yg  

Observation time tag correlation 

( )
c

t
re

ref

ρρρ Δ+Δ+
Ψ=Δ 2

1

 

Computed observation 

( ) er
g

tagrefgc t
y

ttyy ρρ Δ+Δ+
∂

∂
Δ−Δ+=  
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3.4 Station to satellite to second station and back 4-Way Range 

Geometric observation 

11 stasat xxx rrr
−=Δ , 11 stasat vvv rrr

−=Δ  

22 stasat xxx rrr
−=Δ , 22 stasat vvv rrr

−=Δ  

11 xrΔ=ρ ,  
1

11
1 ρ
ρ xv rr
&

Δ⋅Δ
=  

22 xrΔ=ρ ,  
2

22
2 ρ

ρ xv rr
&

Δ⋅Δ
=  

21 22 ρρ +=gy  

Observation partial derivatives w.r.t. satellite position and velocity 

2

2

1

1 22
ρρ
xx

x
y

sat

g
rr

r
Δ

+
Δ

=
∂

∂
, 0=
∂

∂

sat

g

v
y
r  

Observation partial derivatives w.r.t. first and second stations position and velocity 

1

1
1

1

2
ρ
xE

x
y

sta

g
r

r
Δ

−=
∂

∂
, 0

1

=
∂

∂

sta

g

v
y
r  

2

2
2

2

2
ρ
xE

x
y

sta

g
r

r
Δ

−=
∂

∂
, 0

2

=
∂

∂

sta

g

v
y
r  

Observation partial derivative w.r.t. to time 

21 22 ρρ && +=
∂

∂

t
yg  

Observation time tag correlation 

( )
c

t
satstatstat

ref

ρρρρρ Δ+Δ+Δ++
Ψ=Δ

2121 2
1

 

Computed observation 
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( ) satstatstat
g

reftaggc t
y

ttyy ρρρ Δ+Δ+Δ+
∂

∂
Δ+Δ+= 21  
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3.5 Ground station to satellite 1-Way Range Rate 

Geometric observation 

stasat xxx rrr
−=Δ , stasat vvv rrr

−=Δ  

xrΔ=ρ ,  
ρ

ρ xv rr
&

Δ⋅Δ
=  

ρ&=gy  

Observation partial derivatives w.r.t. satellite and station position and velocity 

ρ
ρ

ρ xv

x
y

sat

g

r
&

r

r

Δ
−Δ

=
∂

∂
,   

ρ
x

v
y

sat

g
r

r
Δ

=
∂

∂
 

⎥
⎦

⎤
⎢
⎣

⎡
Δ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ−

Δ
=

∂

∂
xEvxE

x
y

sta

g r&r
r

&r ρ
ρ

ρ
1 , 0=

∂

∂

sta

g

v
y
r  

Observation partial derivative w.r.t. to time 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ ×Ω−⋅Δ−Δ=

∂

∂
⊕

2
3

21 ρμ
ρ

&
rrrr

statsat
g vx

r
xv

t
y

 

Observation time tag correlation 

c
tref

ρ
Ψ=Δ  

Computed observation 

( ) satstat
g

reftaggc t
y

ttyy ρρ && Δ+Δ+
∂

∂
Δ+Δ+=  
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3.6 Station to satellite to second satellite and back 4-Way Range 

Geometric observation 

stasat xxx rrr
−=Δ 11 , stasat vvv rrr

−=Δ 11  

212 satsat xxx rrr
−=Δ , 212 satsat vvv rrr

−=Δ  

11 xrΔ=ρ ,  
1

11
1 ρ
ρ xv rr
&

Δ⋅Δ
=  

22 xrΔ=ρ ,  
2

22
2 ρ

ρ xv rr
&

Δ⋅Δ
=  

21 22 ρρ +=gy  

Observation partial derivatives w.r.t. first and second satellites position and velocity 

2

2

1

1

1

22
ρρ
xx

x
y

sat

g
rr

r
Δ

+
Δ

=
∂

∂
, 0=

∂

∂

sat

g

v
y
r  

2

2

2

2
ρ
x

x
y

sat

g
r

r
Δ

−=
∂

∂
,  0

2

=
∂

∂

sta

g

v
y
r  

Observation partial derivatives w.r.t. station position and velocity 

1

1
12
ρ
xE

x
y

sta

g
r

r
Δ

−=
∂

∂
,  0=

∂

∂

sta

g

v
y
r  

Observation partial derivative w.r.t. to time 

21 22 ρρ && +=
∂

∂

t
yg  

Observation time tag correlation 

( )
c

t
satsatstat

ref

2121 2
1 ρρρρρ Δ+Δ+Δ++

Ψ=Δ  

Computed observation 
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( ) 21 satsatstat
g

reftaggc t
y

ttyy ρρρ Δ+Δ+Δ+
∂

∂
Δ+Δ+=  
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3.7 Satellite Altimetry 

 

s ∇ 

s 

λ 

λ Geodetic 
i

= 

h 

λ 

h Geodetic Height= 

s Ellipsoid = 

 

Geometric observation 

subsatsatg xxhy rr
−==  (this is the geodetic height) 

Observation partial derivatives w.r.t. satellite position and velocity 

h
xxs subsatsat
rr

−
=∇  (gradient of the ellipsoid surface in inertial coordinates) 

Observation partial derivative w.r.t. to time 

h
xxs subsatsat
rr

−
=∇  (gradient of the ellipsoid surface in inertial coordinates) 
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s
x
y

sat

g ∇=
∂

∂
r ,  0=

∂

∂

sat

g

v
y
r  

Observation partial derivative w.r.t. to time 

svh
t

y
sat

g ∇⋅==
∂

∂ r&  

Observation time tag correlation 

c
tref

ρρ Δ+
Ψ=Δ  

Computed observation 

( ) ρΔ+
∂

∂
Δ+Δ+=

t
y

ttyy g
reftaggc  
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3.8 Satellite Inertial position 

Geometric observation 

i
sat

i
g xy = , 1,2,3i =  (in inertial reference frame) 

Observation partial derivatives w.r.t. satellite position 

j
ij

sat

i
g

x
y

δ=
∂

∂
, 1,2,3ji, =  where 

ji,
ji,

0
1

≠
=

⎩
⎨
⎧

=j
iδ  (Kronecker symbol) 

Observation partial derivative w.r.t. time 

i
sat

i
g v
t

y
=

∂

∂
, 1,2,3i =  (in inertial reference frame) 

Computed observation 

t
y

tyy g
taggc ∂

∂
Δ+=  
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3.9 Satellite Earth Fixed position 

Geometric observation 

i
sat

i
g xy = , 1,2,3i =  (in Earth-fixed reference frame) 

Observation partial derivatives w.r.t. satellite position 

ijeE = , EFI xEx rr
⋅= , (rotation matrix from Earth-fixed to inertial frame) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

∂

∂
⇒=

∂

∂

i

i

i

sat

i
g

ijj
sat

i
g

e
e
e

x
y

e
x
y

3

2

1

r , 1,2,3ji, =  

Observation partial derivative w.r.t. time 

i
sat

i
g v
t

y
=

∂

∂
, 1,2,3i =  (in Earth-fixed reference frame) 

Computed observation 

t
y

tyy g
taggc ∂

∂
Δ+=  
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3.10 Satellite to Satellite 1-Way range (satellite to satellite pseudo-range) 

Geometric observation 

re xxx rrr
−=Δ ,  re vvv rrr

−=Δ  

xrΔ=ρ ,  
ρ

ρ xv rr
&

Δ⋅Δ
=  

ρ=gy  

Observation partial derivatives w.r.t. emitter satellite position and velocity 

ρ
x

x
y

e

g
r

r
Δ

=
∂

∂
,  0=

∂

∂

e

g

v
y
r  

Observation partial derivatives w.r.t. receiver satellite position and velocity 

ρ
x

x
y

r

g
r

r
Δ

−=
∂

∂
,  0=

∂

∂

r

g

v
y
r  

Observation partial derivative w.r.t. to time 

ρ&=
∂

∂

t
yg  

Computed observation 

re
tagnotagg

gc c
xv

ct
y

yy ρρ
ρ ~~
~

_ Δ+Δ+
Δ⋅

−
Δ
⋅

∂

∂
−=

rr

, if observation is tagged at reception time 

re
tagnotagg

gc c
xv

ct
y

yy ρρ
ρ ~~
~

_ Δ+Δ+
Δ⋅

−
Δ
⋅

∂

∂
+=

rr

, if observation is tagged at emission time 

where: 

rrtag tc ρρ Δ+Δ=Δ~
, if observation is tagged at reception time 

eetag tc ρρ Δ−Δ=Δ~
, if observation is tagged at emission time 
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3.11 Satellite to satellite 2-Way Range 

Geometric observation 

re xxx rrr
−=Δ ,  re vvv rrr

−=Δ  

xrΔ=ρ ,  
ρ

ρ xv rr
&

Δ⋅Δ
=  

ρ2=gy  

Observation partial derivatives w.r.t. emitter satellite position and velocity 

ρ
x

x
y

e

g
r

r
Δ

=
∂

∂
2 ,  0=

∂

∂

e

g

v
y
r  

Observation partial derivatives w.r.t. receiver satellite position and velocity 

ρ
x

x
y

r

g
r

r
Δ

−=
∂

∂
2 ,  0=

∂

∂

r

g

v
y
r  

Observation partial derivative w.r.t. to time 

ρ&2=
∂

∂

t
yg  

Observation time tag correlation 

( )
c

t
re

ref

ρρρ Δ+Δ+
Ψ=Δ 2

1

 

Computed observation 

( ) er
g

tagrefgc t
y

ttyy ρρ Δ+Δ+
∂

∂
Δ−Δ+=  
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3.12 Satellite to Satellite 1-Way Range Rate 

Geometric observation 

er xxx rrr
−=Δ ,  er vvv rrr

−=Δ  

xrΔ=ρ ,  
ρ

ρ xv rr
&

Δ⋅Δ
=  

ρ&=gy  

Observation partial derivatives w.r.t. emitter satellite position and velocity 

ρ
ρ

ρ xv

x
y

e

g

r
&

r

r

Δ
−Δ

−=
∂

∂
, 

ρ
x

v
y

e

g
r

r
Δ

−=
∂

∂
 

Observation partial derivatives w.r.t. receiver satellite position and velocity 

ρ
ρ

ρ xv

x
y

r

g

r
&

r

r

Δ
−Δ

=
∂

∂
, 

ρ
x

v
y

r

g
r

r
Δ

=
∂

∂
 

Observation partial derivative w.r.t. to time 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅Δ−Δ=

∂

∂ 2
33

21 ρμ
ρ

&
rr

rr

r

r

e

eg

r
x

r
xxv

t
y

 

Observation time tag correlation 

c
tref

ρ
Ψ=Δ  

Computed observation 

( ) 21 satsat
g

reftaggc t
y

ttyy ρρ && Δ+Δ+
∂

∂
Δ+Δ+=  
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3.13 Satellite to Satellite 2-Way Range Rate 

Geometric observation 

er xxx rrr
−=Δ , er vvv rrr

−=Δ  

xrΔ=ρ , 
ρ

ρ xv rr
&

Δ⋅Δ
=  

ρ&2=gy  

Observation partial derivatives w.r.t. emitter satellite position and velocity 

ρ
ρ

ρ xv

x
y

e

g

r
&

r

r

Δ
−Δ

−=
∂

∂
2 , 

ρ
x

v
y

e

g
r

r
Δ

−=
∂

∂
2  

Observation partial derivatives w.r.t. receiver satellite position and velocity 

ρ
ρ

ρ xv

x
y

r

g

r
&

r

r

Δ
−Δ

=
∂

∂
2 , 

ρ
x

v
y

r

g
r

r
Δ

=
∂

∂
2  

Observation partial derivative w.r.t. to time 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅Δ−Δ=

∂

∂ 2
33

22 ρμ
ρ

&
rr

rr

r

r

e

eg

r
x

r
xxv

t
y

 

Observation time tag correlation 

c
tref

ρ
Ψ=Δ  

Computed observation 

( ) 21 satsat
g

reftaggc t
y

ttyy ρρ && Δ+Δ+
∂

∂
Δ+Δ+=  
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3.14 GNSS Double Differences between two Ground Stations 

GNSS Satellites : 1, 2 

GNSS Ground Stations : a, b. According to Napeos conventions, Station b is always the 
MASTER station in the double difference generation. 

Geometric observation 

αα xxx ii
rrr

−=Δ , αα vvv ii
rrr

−=Δ ,  ⎜⎜
⎝

⎛
=
=

ba,
1,2

α
i

 

ααρ ii xrΔ= ,  
α

αα
α ρ

ρ
i

ii
i

xv rr
&

Δ⋅Δ
= , ⎜⎜

⎝

⎛
=
=

ba,
1,2

α
i

 

( )babagy 2211 ρρρρ −−−=  

Observation partial derivatives w.r.t. first and second GNSS satellite position and velocity 

b

b

a

ag xx
x
y

1

1

1

1

1 ρρ

rr

r
Δ

−
Δ

=
∂

∂
,  0

1

=
∂

∂

v
yg
r  

a

a

b

bg xx
x
y

2

2

2

2

2 ρρ

rr

r
Δ

−
Δ

=
∂

∂
,  0

2

=
∂

∂

v
yg
r  

Observation partial derivatives w.r.t. first and second stations position and velocity 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

Δ
=

∂

∂

a

a

a

a
a

a

g xxE
x
y

1

1

2

2

ρρ

rr

r , 0=
∂

∂

a

g

v
y
r  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

Δ
=

∂

∂

b

b

b

b
b

b

g xxE
x
y

2

2

1

1

ρρ

rr

r , 0=
∂

∂

b

g

v
y
r  

Observation partial derivative w.r.t. to time 

( )baba
g

t
y

2211 ρρρρ &&&& −−−=
∂

∂
 

Observation time tag correlation 
All ranges ( ρ ) are computed using the correction in the Station-to-Satellite 1-way range algorithm described above. 

Computed observation 
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3.15 GNSS Double Differences between a Ground Station and an Orbiting Receiver 

GNSS Satellites : 1, 2 

GNSS Ground Station : a 

GNSS Orbiting Receiver : b.  

According to Napeos conventions, the Orbiting Receiver (b) is always the MASTER in the 
double difference generation 

Geometric observation 
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Observation time tag correlation 

All ranges ( ρ ) are computed using the correction in the Station-to-Satellite and Satellite-to-
Satellite 1-way range algorithms described above. 

Computed observation 

gc yy =  

3.16 GNSS Double Differences between two Orbiting Receivers 

GNSS Satellites : 1, 2 

GNSS Orbiting Receivers : a, b.  

Geometric observation 
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Observation time tag correlation 

All ranges ( ρ ) are computed using the correction in the Station-to-Satellite and Satellite-to-
Satellite 1-way range algorithms described above. 

Computed observation 
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3.17 Azimuth and Elevation from a Ground Station 

Geometric observation 
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4 ORBIT PROPAGATION 

4.1 The Orbit Propagation Problem 

The orbit propagation problem consists of predicting the satellite state vector (i.e. position and 
velocity of its centre-of-mass) in a future time t, given an initial state vector at time t0 (the 
epoch) and a model for the forces acting on the satellite. 
Therefore, propagating an orbit consists in the integration of the equations of motion. These are 
a vectorial second order set of differential equations, which can be converted to a first order set 
by taking into account that the velocity vector is the time derivative of the position vector. 
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Then, the final problem can be written as 
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where X
r

 may include other parameters than just position-velocity, called then extended state 
vector. 

The problem then reduces to solve  
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where in general x, y and f are vectorial functions. 

A mathematical description of each of the forces acting on a near-earth satellite (gravitational, 
surface and propulsion forces) can be found in RD-5, RD-9, and RD-29. It is important to note 
that some of these force models include parameters whose numerical values are only 
imperfectly known. 
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4.2 Adams-Bashforth 

This subroutine implements an 8th-order Adams-Bashforth/Adams-Moulton prediction- 
correction method to numerically solve a system of n ordinary first order differential equations 
with initial values RD-2. The problem can be expressed in the form: 
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being x the independent variable and yi the dependent variables. Numerical methods evaluate 
the values of yi in successive points of an interval starting at x0 (mesh points). The solution at 
other intermediate points can be evaluated using an interpolation algorithm. 

The system can be solved by solving each of the n equations simultaneously, so the problem is 
reduced to solving one differential equation previously indicated: 

( ) ( ) 00;,..., yxyyxf
dx
dy

==  

Multi-step methods evaluate y using information in several previous points of the interval. A 
particular case of these methods are the predictor-corrector methods. In a predictor-corrector 
method of order 8, yi+1 is predicted by a formula making use of the previous 9 points. This 
prediction is then used together with the previous 8 points in a formula that corrects the 
predicted value. The corrector formula is re-applied until it converges to a value of yi+1. The 
convergence can be achieved in one or two iterations by selecting a small enough step size. 
Before applying a predictor-corrector method, the first 9 points must be available. These can be 
computed using a 8th-order single-step Runge-Kutta method (subroutine rukut8), starting from 
the known value of y at x0, y0.  

The 8th-order Adams-Bashforth/Adams-Moulton method is based on the following algorithm: 
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the Near-Earth orbit propagation is studied. Some recommendations are also given about the 
optimal way to use these methods and some special actions that have to be taken in presence of 
force discontinuities. An eighth-order Adams-Bashforth/Adams-Moulton predictor-corrector 
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method (initialised by an eighth-order Runge-Kutta method) is recommended. A description of 
this method can be found in [R1.]. 

The coefficients being (two of them are wrong in reference): 
i Adams-Bashforth Coefficients 

( )iβ  

Adams-Moulton Coefficients 

( )*
iβ  

0 14097247 1070017 

1 -43125206 4467094 

2 95476786 -4604594 

3 -139855262 5595358 

4 137968480 -5033120 

5 -91172642 3146338 

6 38833486 -1291214 

7 -9664106 312874 

8 1070017 -33953 

Table 4.1: Adams-Bashford/Adams-Moulton Coefficients 

4.3 Fixed step 8th order Runge-Kutta 

This subroutine numerically integrates a system of ordinary differential equations using a 
single-step 8th-order Runge-Kutta method [R4.]. 

The formulation to compute the consecutive values of ny  at nx , at independent variable 
increments h, by means of an 8th order single step Runge-Kutta method is 
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where the required coefficients are listed in the following table 
 j 0 1 2 3 4 5 6 7 8 9 

i ai bij 
1 4/27 4/27          

2 2/9 1/18 3/18         

3 1/3 1/12 0 3/12        
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4 1/2 1/8 0 0 3/8       

5 2/3 13/54 0 -27/54 42/54 8/54      

6 1/6 389/4320 0 -54/4320 966/4320 -824/4320 243/4320     

7 1 -231/20 0 81/20 -1164/20 656/20 -122/20 800/20    

8 5/6 -127/288 0 18/288 -678/288 456/288 -9/288 576/288 4/288   

9 1 1481/820 0 -81/820 7104/820 -3376/820 72/820 -6.14634 -0.07317 720/820  

  41/840 0 0 27/840 272/840 27/840 216/840 0 216/840 41/840 

  cj 

Table 4.2: Runge-Kutta Coefficients 

4.4 Variable step 7-8th order Runge-Kutta 

The technique is to compute two Runge-Kutta methods of consecutive orders (7 and 8) at each 
step, RD-3. The lower order Runge-Kutta method provides an estimate for yn+1 while the 
higher one provides a more accurate estimate. Their difference is an estimate of the local 
truncation error for yn+1: 

8
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 j 0 1 2 3 4 5 6 7 8 9 10 11   

i ai bij ci ci
* 

0 2/27 0            41/840 0 

1 1/9 2/27            0 

2 1/6 1/36 1/12           0 

3 5/12 1/24 0 1/8          0 

4 1/2 5/12 0 -25/16 25/16         0 

5 5/6 1/20 0 0 1/4 1/5        34/105 

6 1/6 -25/108 0 0 125/108 -65/27 125/54       9/35 

7 2/3 31/300 0 0 0 61/225 -2/9 13/900      9/35 

8 1/3 2 0 0 -53/6 704/45 -107/9 67/90 3     9/280 

9 1 -91/108 0 0 23/108 -976/135 311/54 -19/60 17/6 -1/12    9/280 

10 0 2383/4100 0 0 -341/164 4496/1025 -301/82 2133/4100 45/82 45/164 18/41   41/840 0 

11 1 3/205 0 0 0 0 -6/41 -3/205 -3/41 3/41 6/41 0  0 41/840 

12 2/27 -1777/4100 0 0 -341/164 4496/1025 -289/82 2193/4100 51/82 33/164 12/41 0 1 0 41/840 

Table 4.3: Runge-Kutta 7-8 Coefficients 

4.5 Legendre Polynomials and Associated Functions 

As it has been seen, a set of Legendre functions has to be defined to calculate some of the 
perturbing forces. These functions are also needed for site displacement.For that reason a 
dedicated module has been written to handle with these computation within NAPEOS. 

4.5.1 Definition 

The Legendre Function of the first kind are solutions to the case of null parameter Legendre 
Differential Equation (RD-16) which is obtained from the assumption of a separation of 
variables in the Laplace equation written in spherical coordinates (RD-6) Applying the 
Rodriges’ Formula (RD-16), one obtains the definition of the Legendre polynomials as: 
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The polynomials can be evaluated using the recurrence relationship below 
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xxP =)(1  

The associated Legendre Functions are solution of the associated Legendre differential 
equation (parameter not null), and can be defined as 
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These functions can also be evaluated using two recurrence relations 
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For some calculations these functions can be defined in an alternative form, in order to save 
computation time. For instance, another set of functions can be formed using the following 
relationship 
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These functions can be obtained using recurrences, in a similar way as for Legendre functions: 
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A mean advantage of this set is that derivatives w.r.t. its argument are much easier to be 
evaluated as shown below: 
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5 ORBIT FORCE MODELS 

5.1 Central Earth Gravity Field 

This is the main driving force acting on a satellite, which is equivalent to the field generated by 
a mass point located at the centre of co-ordinates. All other forces are considered as 
perturbation to first order expansion about this one. The acceleration generated by such a field 
at a point define by its position vector, rr , is given by 

r
r

a rr
3
⊕=

μ  

or written as a potential function 

r
U ⊕=

μ  

where  

⊕⊕ = GMμ  : Gravitational constant of the Earth 

The partial derivatives of the central acceleration with respect to the satellite position are then 
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To calculate the partial w.r.t. to ⊕μ , the perturbing acceleration due to other effects, like non-
central earth gravity field, must be already computed. Since the dependency on ⊕μ  is linear, 
the derivative is simple the acceleration due to earth gravity divided by ⊕μ .  

5.2 Non-spherical Earth Gravity Field 

The non-spherical mass distribution of the Earth creates deviations from the central Earth 
gravity field. This deviation is considered as a correction to the central field and is normally 
expressed as a spherical harmonic expansion in the form  
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where 

r  : radius vector 

φ  : latitude 

λ  : longitude 

nP  : Legendre polynomial of degree n 

nmP  : Legendre associated function of degree n and order m 

⊕R  : Radius of the Earth (reference for the expansion) 

0nC  : zonal harmonic coefficients 

nmnm SC ,  : tesseral (n≠m) harmonic coefficients and sectoral harmonic coefficients (n=m) 

There are several models of the Geopotential published by the Group de Recherche en 
Géodésie Spatiale, GeoForschungsZentrum, the Centre for Space Research and the Goddard 
Space Flight Centre for instance.  

5.2.1 Acceleration Computation Algorithm 

The calculation of the gradient of this potential function is quite time-consuming. Therefore an 
optimized algorithm must be used to save time in repetitive calculation. The equation is 
transformed first taking into account the following definition 

φρ cos22 ryx =+=  

λφλρ mrmc mmm
m coscoscos ==  

λφλρ mrms mmm
m sincossin ==  

mc  and ms  are given by recurrence relationship as 

1111 −− −= mmm ssccc  

1111 −− −= mmm csscs  

with 

λρ cos1 =c  

λρ sin1 =s  

A set of functions derived from Legendre polynomials (Section 4.5) is defined as below: 
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These functions are generated by OPlg_legn in module OPlg_Legendre. The derivatives are 
also expressed in terms of functions of the same set 
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Another improvement on time saving is the use of factorised harmonic coefficient as follows 
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The acceleration in earth-fixed system are calculated as follow 
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After this computation, the acceleration vector must be transformed to the inertial frame in 
order to add it to the accumulated perturbing acceleration. 
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5.2.2 Partial Derivatives Computation Algorithm 

For orbit determination, the partial derivatives of the acceleration with respect to the state 
vector are also required. The acceleration depends only on the spacecraft position and therefore 
the partial derivatives with respect to velocity are all zero. 

Taking into account the relationship 

ijji xx
U

xx
U

∂∂
∂

=
∂∂

∂ 22

 

the partials are given as a matrix like this 
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the six unique partial derivatives can the n be obtained from the following formulation 
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where 
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with 
N : truncation degree in the partial derivative expansion 

M : truncation order in the partial derivative expansion 

5.3 Secular rates to harmonics 

Some temporal variations in the geopotential can be due to internal geophysical phenomena 
that are difficult to model and which lead, on the flight dynamics scale, to a temporal drift of 
the harmonic coefficients. 
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where  
0
nmC  and 0

nmS  are the value of the harmonic for a reference epoch (for instance, 1st January 
1986, for JGM-1) 

1
nmC  and 1

nmS  are the secular rates for the harmonic (in 1−year  usually) 

The change in 220 JC =  due to the deceleration of the Earth rotation is also considered. 

Secular change in the harmonics 21C  and 21S  due to the displacement of the pole inertia are 
also considered, section 6 of RD-7 which gives 

22222021
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SyCxCxC
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Where x and y are the angular displacements of the pole of the Terrestrial Reference Frame. 

 

5.4 Solid Earth Tides Perturbation 

The earth, which is not perfectly rigid, deforms under the solar and lunar gravitational 
attractions. These deformations, associated with the redistribution of mass, can be conveniently 
defined using the Love numbers, introduced by A. love in 1909. The deformation can be 
expressed as a change to the external geo-potential, see section 6 of RD-7 
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where 

nk  is the Love number for degree n 

φ  is the phase due to the inelasticity of the Earth 

Considering only the second order effect, i.e. 20CΔ , a first simplification can be obtained. With 
this approximation, indirect effects on kC4Δ  and kS4Δ  are neglected. 
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where 

2k  is the Love number for degree 2 

1,2P =  corresponds to Moon and Sun 

rr  is the s/c geocentric position vector 

jrr  is the s/c geocentric position vector of body j, with a phase φ, to account for inelasticity. 

The gradient of this perturbating potential is written then 
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In the deformation of the Earth, a time lag has to be considered due to inelasticity of the solid 
part of the Earth. This phase angle is approximately 2.9 degrees, so the global tide occurs at 
points that were directly in line with the perturbing body (Moon or Sun) 12 minutes ago RD-6. 

The acceleration partials are evaluated as 
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Some corrections to nkCΔ  and nkSΔ  must be taken into account due to frequency dependent 
tides; only for the harmonics coefficients 21 and 22 are considered. At this point only elastic 
Earth is considered. 
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where 

skδ  is the difference between Wahr model for k at frequency s and the nominal value k2. 

sH  is amplitude of term at frequency s (see RD-7). 

Note that in Napeos the solid earth tides according to the response of the “anelastic Earth” has 
been implemented according to the Section 6.1 of RD-7.  

5.5 Pole Tides Perturbation 

Another correction present in the formulae is the Earth Pole Tide, due to the centrifugal effect 
of polar motion. From RD-7 the formulae below has been adopted. 
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Where m1 and m2 are in seconds of arc and defined, according to Section 7.1 of RD-7, as: 
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where xp, yp are expressed in arc of seconds and 



 
NAPEOS 
Mathematical Models and Algorithms 

Document No:  

Issue/Rev. No: 

Date : 

Page : 

DOPS-SYS-TN-0100-OPS-GN 

1.0 

5-NOV-2009 

55 

 

 

)()()()(

)()()()(

000

000

tytttyty

txtttxtx

ppp

ppp

&

&

−+=

−+=
 

Using the given values (in arcseconds and arcseconds per year respectively): 
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These values are defined in the module DBcb_Data.f90. 

 

5.6 Ocean Tides 

The dynamical contribution of ocean tides due to the gravitational attraction of the Sun and 
Moon can be formulated in terms of a large number of frequency-dependent terms. The 
additional potential outside the Earth can be expressed as an expansion of spherical harmonics, 
see e.g., RD-7. 
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Where 

wρ  is the density of sea water 

lk ′  is load deformation coefficient 

s  is the tide index 
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where 

βθ
rr

⋅= ss n  is the argument of the tide with [ ]lss nnnnnnn 654321=
r  which is the vector formed 

with the integer multipliers of the tide. These integers are related with Doodson notation 
654321 dddddd  in the following way 
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The Doodson vector [ ]TspNphs ′= τβ
r

, is related to the fundamental arguments of nutation. 
For details, see RD-7, RD-8, and RD-9. 

Eq. 5.3 shows that the effect of ocean tides can be translated into a correction to the 
gravitational spherical harmonic of Eq. 5.1. 
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where ⊕M  is the Earth’s mass.  

The ocean tides effects are accounted for on user request. It requires an input file that specifies 
the amplitudes and the phases. The user has to indicate, just like for the gravity field, the 
degree and order for which the ocean tidal effect on the gravity has to be computed. In addition 
the user has to maximum number of constituents to be used. For this purpose the ocean tides 
constituents in the input file are sorted by size of their amplitudes so that only the largest “n” 
constituents are used. 

 

5.7 Third Body gravitational force 

The presence of the Moon, the Sun and the Planets produces acceleration on a spacecraft 
orbiting the Earth that responds to the following formulation 
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where the k-summation extends to all perturbing bodies and μk is the gravitational constant of 
body j.  

In NAPEOS all planets, including Pluto, are considered. 

 

5.8 Indirect J2/Moon Interaction 

The third-body perturbation equation is obtained assuming that the gravitational attraction 
between the Earth and the rest of planets (including the Sun) can be modelled as point centred 
masses. This approximation can bring errors for the case of the Moon, since its proximity 
makes it be affected by the non-spherical mass distribution of the Earth.  
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A first approximation, only J2 of the Earth harmonic geo-potential expansion is considered. In 
Earth-fixed system this perturbation is expressed as 
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where 

lφ  is the latitude of the Moon 

lλ  is the longitude of the Moon 

lμ  is the gravity constant of the Moon 

2J  is the second zonal harmonic of the Earth gravity field 

 

5.9 General Relativistic effects 

The acceleration acting on a satellite orbiting a heavy rotating body must be corrected for 
relativistic effects due to the curvature in the time-space. 

The correction to the acceleration of an artificial satellite by the presence of the Earth as given 
in RD-7 is: 
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Where 
c : speed of light 

β, γ : PPN parameters, equal to 1 in General Relativity 

J
r

 is the Earth’s angular momentum per unit mass ( )smJ 28108.9 ×≅
r

 

rrr
r
&&

r
&

r ,,  : geocentric satellite position, velocity and acceleration, respectively 
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Sunμμ ,⊕  : Gravitational constant of the Earth, and Sun, respectively 

The second and third lines in the equation above are the Lense-Thirring precession (frame-
dragging) and the geodesic (de Sitter) precession, respectively. Both terms are currently 
neglected in NAPEOS. Only the first term is included. With both β and γ equal to one for 
general relativity the relativistic correction becomes: 

( ) ( )
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This is implemented in the module OPre_Relativity.f90. 

 

5.10 Solar Radiation Pressure 

The perturbing forces due to solar radiation pressure may be computed using two different 
models. 

5.10.1 IERS Solar Radiation Pressure Model 

The IERS Formulation is given in RD-7 

R
RCKa R

r
r *=Δ

 
where 

RC : Solar radiation coefficients (scale factor) 

RR,
r

: Heliocentric radius vector (and its module) of the satellite 
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Eq. 5.4 

  

where 

AUI : Solar intensity of radiation at one astronomical unit 

AUR : One astronomical unit 

RA : Cross sectional area (as seen from the Sun) 
m : Satellite mass 
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c : speed of light 

Constant 
*K  (Eq. 5.4)is obtained and so the partial w.r.t. s/c state vector that can be written 

as 
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The cross-sectional area RA  can be obtained from database tables. The partial derivatives 

respect to s/c state vector and the RC  coefficient are calculated straightforward dividing the 

perturbing acceleration by RC . 

 

5.10.2 GPS ROCK-models 

For GPS satellites special solar radiation pressure models were developed by Rockwell 
international, based on the material properties of the spacecraft. The resulting models were 
called the GPS Rock-models. In NAPEOS the ROCK models are implemented and may be 
used. The amplitudes and phases of the different constituents of the model parameters are 
introduced through a file and thus different models may be used. This is convenient since 
different models were derived and published.  

The general formulation of these models is 

( )inin
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where irm &&  are the components on this perturbation. The partial w.r.t. s/c position is: 
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The formulae for the T10 version of the ROCK model, for the GPS-block I satellites, are: 

( ) ( ) 08.008.04cos06.09.02sin08.0sin55.4 ++Φ−+Φ+Φ−=X  
( ) Φ−−Φ+Φ−= 4sin03.03.02sin20.0cos54.4Z  

where Φ  is the angle between the Sun ant +Z axis of the satellite, measured in radians, and it 
is handled by the module OPst_STX 

X and Z are given in 10-5 Newton’s. 
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The formulae for the T20 version of the ROCK model, for the GPS-block II and IIA satellites, 
are: 

Φ−Φ+Φ+Φ−= 7sin07.05sin10.03sin16.0sin55.4X  
Φ−= cos43.8Z  

The formulae for T30 version of the ROCK model, for the GPS-block IIR satellites, are: 

Φ+Φ−Φ−= 5sin2.03sin2.0sin0.11X  
Φ+Φ+Φ−= 5cos2.03cos1.0cos3.11Z  

The evaluation of these forces is handled by the module OPrd_Radiation.f90 

It should be noted, however, that in recent years it has become clear that these models are of 
limited value for precise POD applications. Equivalent, if not even better, results are obtained 
by ignoring the solar radiation models completely but just estimating parameters that absorb 
the solar radiation pressure forces very well, see RD-36 

 

5.11 Aerodynamic forces 

Though the atmospheric density at satellite altitude is low the drag remains as an important 
perturbation. This perturbing force can be written as follows (RD-8) 

( )llnnddref ucucucSvF rrrr
++−=Δ 2

2
1 ρ  

where 
ρ  is atmospheric density, as defined for the case of free molecular flow 

v  is velocity relative to the atmosphere 

refS  is reference surface of the satellite 

[ ]lnd ccc  are drag, lateral and lift coefficients respectively 

w

w
d v

vu r

r
r

−=  where wvr  is the s/c velocity , corrected with wind local velocity 
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d
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dnl uuu rrr
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Usually effective surfaces, including the coefficients, for different satellite attitude are used. 
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5.12 Earth albedo and infra-red radiation pressure 

The effect of the Earth albedo and the infra-red radiation pressure can be modelled as the 
acceleration due to a Earth area element AΔ : 

 

[ ] 12 coscos n
M
A

cd
AICICa R

irirssalb
rr θ

π
γ ⎟

⎠
⎞

⎜
⎝
⎛Δ

+Ψ=Δ  Eq. 5.5

 

where 

albC  and irC  are albedo and infra-red reflectivity coefficients 

γ  is the Earth albedo coefficient, i.e. fractions of incoming solar radiation re-emitted in visible 
region of spectrum 

sΨ  is angle between the element surface normal and the radio-vector to the Sun 

sI  is re-radiation flux from sun at earth distance 

irI  is radiation flux re-emitted in infra-red region of spectrum 

d  is distance from spacecraft to the element 

sA  is cross-section perpendicular to the element 

m  is the mass of the spacecraft 

θ  is the angle between the normal to AΔ  and the direction to the spacecraft 

c  is the speed of light 

nr  is the unit vector from the surface to the spacecraft 
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Both the albedo coefficient and the infra-red radiation flux are assumed to depend on latitude. 

The evaluation of equation (5.5) is carried out with a numerical approach, whose details can be 
found in RD-11. 

5.13 Long manoeuvres 

The long manoeuvre for a satellite is given for its acceleration profile. This profile is used for 
the integration of Newton’s equation. In some cases the manoeuvre is considered as impulsive, 
that is, a vrΔ  is applied to the velocity vector. This increment of velocity is calculated as 

( )∫=Δ
end

begin

t

t

dttav rr  

where 
ar  is the acceleration profile 

begint  and endt  are manoeuvre start and end time, respectively 

The time when this vrΔ  is applied is calculated as follows 

( )

( )∫

∫
=

end
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end
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t
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dtta

tdtta

t
r

r

 

5.14 Empirical accelerations 

Empirical accelerations are used to compensate model errors. For low flying satellites typically 
the Earth gravity field and/or the atmospheric drag forces are the dominating error sources 
whereas for high-altitude satellites (e.g. GNSS) the solar radiation pressure force constitutes 
the main disturbance.  
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To compensate for the model omissions typically a three directional decomposition is used. 
Examples are radial-, along-, and cross-track for the LEO satellites and a Satellite-Sun-Earth 
based reference frame for the GNSS satellites. In NAPEOS the parameters to compensate for 
the gravitational and atmospheric forces are called “CPR’s” whereas the solar radiation 
pressure force parameters are called “CODE” parameters. 

The 3-axis used for the NAPEOS CPR parameters are the radial direction rur , the transversal 
direction tur  defined as perpendicular to the geocentric position vector and the velocity vector. 
The third direction, called normal nur , is perpendicular to the other two. This system is actually 
orthogonal and for nearly circular orbits it is approximate to the previous described system. 

The empirical accelerations are modelled as a combination of constant and periodic terms using 
the satellite argument of latitude as angular argument. Thus the period of the accelerations is 
one cycle per revolution hence the name CPR. 
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where u is the argument of latitude of the satellite. 

The 3-axis used for the NAPEOS CODE parameters are the Satellite-Sun direction dur , the Y-
axis, rotation axis of the solar panels, direction yur  defined as perpendicular to the Satellite-Sun 
direction and the Satellite-Earth direction. The third direction completing the right-handed 
system, called “B” (for “Bernese” direction) bur , is perpendicular to the other two.  

These empirical accelerations are modelled as a combination of periodic of one cycle per 
revolution. 
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where in this case u is the argument of latitude of the satellite relative to the argument of 
latitude of the Sun in the orbital plane! 

 

For both parameterisations, the nine coefficients that can be estimated can be given known a 
priori values and they can be estimated parameters in the orbit determination process. 
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6 PARAMETER ESTIMATION 

6.1 The Estimation Problem 

If at some time t0 the satellite state vector X is known (X0) and the forces acting on the satellite 
are known, then the satellite equations of motion can be integrated to determine the state vector 
of the satellite at any future time.  

However, the initial state vector in never known exactly. Moreover, certain force models 
require physical parameters that are known only approximately, for example the satellite drag 
coefficient in aerodynamical forces, or the coefficients of the spherical harmonic expansion 
representation of the terrestrial gravity field. This is also the case with geophysical parameters 
that affect indirectly the equations of motion (like earth rotation and polar motion). 
Consequently, to determine the position of the satellite at a future time it is necessary that 
observations of the satellite are taken and used to obtain a better estimate of the satellite 
trajectory. The observational data, which will be subject to both systematic and random errors, 
will usually consist of measurements such as range, range-rate (doppler), azimuth, elevation or 
some other observable quantity. These measurements have to be corrected with models which 
are imperfect (e.g. tropospheric correction) and are usually taken from stations whose earth-
fixed coordinates are not exactly known. 

The problem of determining the best estimate of the satellite state vector (and optionally other 
parameters and geophysical and geodetic quantities) is referred to as statistical orbit 
determination. Sometimes the main interest is focused on the estimation of the geophysical and 
geodetic quantities themselves: this field is called space geodesy. Another variation of the 
problem is simulation and covariance analysis in which orbit determination strategies for a 
future mission are studied in terms of coverage, accuracy requirements and weighting of 
tracking data, orbit determination accuracy expectation, optimal arc-length... 

The problem can be generalized as follows: given an initial state vector at time t0 and the initial 
values of parameters to be estimated (not necessarily at t0), together with their a-priori 
covariance matrix, and given a set of real or simulated observations (not necessarily after t0) 
also with their initial covariance matrix, find the "best" estimate of the state vector at a future 
time and of the rest of the parameters, together with an a-posteriori parameter and observation 
covariance matrix. So, in matrix notation the a-priori values are: 



 
NAPEOS 
Mathematical Models and Algorithms 

Document No:  

Issue/Rev. No: 

Date : 

Page : 

DOPS-SYS-TN-0100-OPS-GN 

1.0 

5-NOV-2009 

65 

 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2
21

2
2

2221

112
2

11

0

1

0

0

0

0

0

0

0 ,

nnnn

n

n

k

P
z
y
x
z
y
x

X

σσσ

σσσ
σσσ

α

α
L

MOMM

L

L

M

 Eq. 6.1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

2

2
2

2
1

0
2

1

00

00
00

,

mm

Q

y

y
y

Y

σ

σ
σ

L

MOMM

L

L

M
 Eq. 6.2

 

X0 being the matrix of estimated parameters or extended initial state vector (n is the total 
number of estimated parameters). 

P0 is the a-priori covariance matrix of the parameters in X0. σii
2 is the a-priori variance of 

parameter i, σij is the a-priori covariance of parameters i and j, which is an indicator of their 
correlation or interdependence. For a mathematical definition of these statistical concepts see 
RD-12. 

Y is the matrix containing the observations (m is the total number of observations, m > n) and 
Q0 is the observation a-priori covariance matrix. We will assume here that the observations are 
a-priori not correlated, i.e. matrix Q0 is diagonal; this is not necessarily true, but it is in general 
not easy to find an a-priori estimation of the observation covariance’s. Let's call ( )tX̂  the best 
estimate of the extended state vector at time t, which is what we are trying to solve. 

By far the most widely-used criterion to obtain in practice the "best" estimate or solution is to 
minimize the sum of the square of the weighted residual observation errors, that is, the square 
of the difference between the observation and the expected value computed from an 
observation model (computed observation), multiplied by a factor (weight) according to the 
observation importance and expected accuracy. These methods are called least-square 
estimators, see RD-9, RD-20, RD-21, RD-25, and RD-29. 

In practice, observations are computed by evaluating the satellite state vector at the observation 
time and finding a geometric/kinematic relationship between the satellite position/velocity and 
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the magnitude which is observed. We can then assume that the computed observations are a 
function of ( )tX̂ , and define the residual observation vector as: 
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The quantity to be minimized (i.e. the sum of the square of the weighted residual observation 
errors) is called the loss function and can be expressed as: 

εε ⋅⋅= −1
0QJ T  Eq. 6.4

 
1

0
−Q  being the weight matrix. The weight matrix is necessary not only to give more importance 

to the most accurate observations but also to avoid adding magnitudes of different units (e.g. 
ranges and velocities). If the measurements are uncorrelated then 0Q  is diagonal: 
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The loss function described in Eq. 6.4 can be modified to account for the uncertainties of the a-
priori values of the estimated parameters (see RD-26). This leads to the definition: 

Ψ+⋅⋅= − εε 1
0QJ T  Eq. 6.6

 

where Ψ  uses in some way (see below) information on the covariance of the X̂ s. The problem 
is then to find the X̂  which minimize J. 

There are two major classes of least-squares estimators: batch and sequential (see RD-9, RD-
20, RD-25, and RD-30.  

A batch estimator updates the extended state vector X0 (and optionally P0 and Q0) iteratively 
after a high enough number of observations (which define the estimation arc) has been 
collected after the epoch t0. Once the process has converged to a best estimate of X0 ( 0X̂ ), the 
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satellite state vector can be propagated to any future time using as initial values the ones from 
0X̂ . 

In a sequential estimator observations are processed as soon as they are received, and the 
extended state vector X and its covariance matrix P are propagated/updated with every new 
observation or small set of observations. The main application of these estimators is the 
operational real-time orbit determination. 

Batch and sequential methods will be described later in this note. 

6.2 Batch Estimation (BAHN) 

The objective is to find a best estimate of X0, (and optionally of P0 and Q0). We have seen that 
the computed observations can be expressed as a geometric/kinematic function of the satellite 
state vector at the time of the observation. As long as the satellite state vector can be 
propagated to any time from the initial state vector, the computed observations are a function 
of the time. The residual observation matrix can then be written as: 
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Let's define in this case the loss function in Eq. 6.6 as: 

0
1

00
1

00 )ˆ( XPXQXJ TT Δ⋅⋅Δ+⋅⋅= −− εε  Eq. 6.8

 

Where: 

000
ˆ XXX −=Δ  

An 0X̂  has to be found which minimizes the loss function )ˆ( 0XJ . This is achieved by 

differentiating Eq. 6.8 with respect to the estimated parameters 0X̂  and setting the resulting 
expression to zero. The problem has to be linearized in order to be solved. Let's assume that the 
difference between 0X̂  and 0X  ( 0XΔ ) is small (i.e. the initial values of the estimated 
parameters are a good enough approximation of the optimal ones). Then the computed 
observations can be expressed as their first order Taylor expansion around 0X : 
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where the betas are all the estimated parameters, i.e. the elements of the X0 vector. The 
residuals can be expressed then as: 
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F is the matrix of observation equation coefficients, which contains the partial derivatives of 
the computed observations with respect to the estimated parameters: 
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Substituting Eq. 6.10 in Eq. 6.8 and differentiating with respect to 0X̂  leads to the following 
iterative algorithm (called normal equations): 
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kX 0

ˆ  is the estimation of  on iteration k (equal to X0 on the first iteration). 

kYΔ  is the residual observation matrix calculated propagating kX 0
ˆ : 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=Δ

),ˆ(

),ˆ(
),ˆ(

0

2022

1011

mmm

k

tXfy

tXfy
tXfy

Y
M

 Eq. 6.13

 

The following matrix: 

FQFPN T ⋅⋅+= −− 1
0

1
0  Eq. 6.14
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is called the normal matrix. It can be shown that the inverse of the normal matrix N is the best 
estimation of the covariance matrix of the estimated parameters, that is: 

11
0

1
0

1
0 )(ˆ −−−− ⋅⋅+== FQFPNP T  Eq. 6.15

 

This matrix is called in short covariance matrix. It is usual (see RD-9 and RD-30) to modify 
the above expression in this way: 

11
0

1
0

1
0 )(ˆ −−−− ⋅⋅+⋅=⋅= FQFP

m
JN

m
JP T  Eq. 6.16

J being the value of the loss function (see below the definition of RMS) and m the number of 
observations. 

 

6.2.1 Observation equation coefficients and variational partials 

The calculation method of the different partial derivatives in F depends highly on the nature of 
the variable with respect to which the derivative has to be calculated (i.e. the corresponding 
estimated parameter). Some of them are zero because the observation does not depend on the 
parameter. Other calculations are straightforward; for example, if the observation is a one-way 
range from a ground station and the parameter in question is the one of the station coordinates, 
then the computed observation would be: 

222 )()()( sss ZzYyXxR −+−+−=  Eq. 6.17

 

where (x,y,z) is the position of the satellite at the time of the observation and (Xs,Ys,Zs) are the 
station coordinates. The partial derivative of R with respect to the parameter Xs would be: 

R
xX

X
R s

s

−
=

∂
∂  Eq. 6.18

 

The way to compute partial derivatives with respect to other parameters can be found in RD-9.  

A special set of parameters are the so-called dynamic parameters, which are the satellite initial 
state vector ),,,,,( 000000 zyxzyx &&&  and the force model unknowns. The partial derivative of an 
observation w.r.t. a dynamic parameter can be expressed as: 
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The coefficients of the file matrix in the right-hand side of Eq. 6.17 are the partial derivatives 
of the computed observation w.r.t. the satellite position and velocity at the time of observation, 
and can be easily evaluated for any kind of observation. For example, differentiating Eq. 6.18 
w.r.t. x we obtain: 

R
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∂
∂  Eq. 6.20

 

However, the coefficients of the column matrix in the right-hand side of Eq. 6.19 (i.e. the 
partial derivatives of the satellite position w.r.t. the dynamic parameter) have to be obtained by 
numerical integration of the variational equations. The column matrices for all the dynamic 
parameters to be estimated form the matrix of position partials: 
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h=6+l being the number of dynamic parameters. Matrix Xm is evaluated by integrating the 
following equation of matrices called variational equations: 

fmmm AXDXDX +⋅+⋅= &&& 21  Eq. 6.22
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being: 
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mX&&  is the matrix of acceleration partials and mX&  the matrix of velocity partials. 

The coefficients of Af are the direct derivatives of the acting accelerations w.r.t. the force 
parameters. 
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D1 and D2 are given by: 
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D1 and D2 are the derivatives of the acting accelerations on the spacecraft w.r.t. the satellite 
position and velocity, respectively. Eq. 6.22 is a system of second order differential equations, 
with the initial conditions: 
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These variational equations can be integrated numerically with the methods described in 
section 1. The contribution of each of the accelerations acting on the satellite must be evaluated 
at every integration step in order to compute matrices D1, D2 and Af. This evaluation is rather 
cumbersome (see RD-9 and RD-27) and is out of the scope of this note. In some cases the 
contribution of some of the forces can be ignored or calculated approximately. In the absence 
of atmospheric drag matrix D2 is zero because no other force depends on the satellite velocity. 
The solution of the variational equations is matrix mX  (and mX&  also), which is what we need 
in order to calculate the derivatives with respect to dynamic parameters in F. The elements of 

mX  and mX&  are also called variational partials. A subset of elements from mX  and mX&  form 
the so-called state transition matrix: 
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which is formed by the partial derivatives of the satellite state vector w.r.t. the initial state 
vector at the epoch t0. This matrix will always be available because at least the six elements of 
the satellite initial state vector must always be estimated. An application of this matrix will be 
seen later. 
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6.2.2 Iterative Sequence and Post-Convergence Analysis 

The scheme of the batch estimator, based on the algorithm given by Eq. 6.12, becomes clear 
now: a propagator propagates the satellite position and velocity from X0, at consecutive steps of 
the time arc defined by the available observational data. These positions and velocities are 
stored. The propagator integrates also the variational equations at the same time steps and the 
resulting variational partials mX  and mX&  are also stored. 

The observations are then sequentially processed: for each observation, a computed 
observation is generated as a function f of the satellite position and/or velocity at the 
observation time. Normally this time will not coincide with one of the integration steps, so an 
interpolation algorithm will have to be applied. The difference between the observation and the 
computed observation (the residual yi-fi) is then calculated. Also for each observation, the 
observation equation coefficients (rows of matrix F) are calculated as described above. This 
will also require interpolating the variational partials. 

Once all observations have been processed matrices YΔ  and F are formed. The normal matrix 
N (Eq. 6.14) is then calculated and inverted. All these matrices are then fed into the normal 
equations (Eq. 6.12) and a new guess of the initial state vector is obtained, 1

0X̂ . 

Note that to solve normal equations, it is not necessary to invert normal matrix. Normal 
equations can be solved without performing such inversion in a much faster process. However, 
if the normal matrix is not inverted, the covariance matrix in Eq. 6.16 cannot be obtained. In 
any case, covariance matrix is only interesting to be obtained in last iteration of the estimation 
process, in the intermediate iterations, its knowledge does not provide any major information. 

Once the normal equations have been solved, the propagator propagates then the new 
estimation of the initial state vector and the whole process is repeated until convergence is 
reached. The process terminates when the difference between two consecutive estimations 
tends to zero, i.e. the loss function J (Eq. 6.8) reaches a minimum. Although the loss function 
does not appear in the normal equations, it must be evaluated at every iteration because it is the 
quantity whose variation determines the convergence or divergence of the process (for example 
if the change of the loss function in percentage is less than a given threshold iterations are 
stopped). Another useful quantity to check the convergence of the process is the root-mean-
square of weighted residuals or RMS: 

m
JRMS =  Eq. 6.24

 

That is, the square root of the loss function (its value on the last iteration) divided by the 
number of observations. The RMS is an indication of whether the a-priori covariances have 
been guessed correctly and, in theory, it should converge to a value of unity. If the process 
converges properly, none of the observation weighted residuals computed on each iteration 
should be much greater than the RMS. Normally, some observations are affected by systematic 
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errors: it is common practice then to eliminate after each iteration those observations whose 
weighted residual is greater than a multiple (e.g. 3) of the RMS. A very high number of 
rejected observations could indicate an incorrect guess of the initial values of the estimated 
parameters or incorrect a-priori observation weights. 

After convergence the best estimate of the covariance matrix of the estimated parameters, 0̂P , 
is calculated using Eq. 6.15or Eq. 6.16. 

The covariance matrix of the satellite state vector (position and velocity) at t0, which is a (6x6) 
submatrix of 0̂P , can be propagated to a future time by means of the state transition matrix 
(Eq. 6.23): 

 

where )(ˆ tP  denotes the best estimate of the (6x6) satellite state vector covariance matrix in a 
future time t. 

Another interesting magnitude is the correlation coefficient of the estimated parameters, 
defined as: 

 

where Cij is the correlation coefficient between parameters i and j. Correlation coefficients 
range from -1 to +1; either extreme value indicates that the two parameters are completely 
dependent and one may be eliminated from the estimation process. 

The covariance matrix, apart from giving the variances and covariances of the unknowns, can 
also be used to compute the a-posteriori (after adjustment) variances of the observations (RD-
9). After convergence the covariance matrix of the observations, which is also the covariance 
matrix of the residuals, is: 

 

The final orbit is propagated using the 0X̂  obtained in the last iteration. The final residuals can 
be computed directly using the final orbit or evaluated using Eq. 6.10: 

 

TtPttP )(ˆ)()(ˆ
0 φφ ⋅⋅=  Eq. 6.25
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TFPFQ ⋅⋅= 00
ˆ  Eq. 6.27
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where 1
0

ˆ +kX  is the final estimate of the state vector and F and kYΔ  are the values on the last 
iteration of the matrix of observation coefficients and of the residuals, respectively. Normally 
matrix F is not stored after each iteration and the residuals after the last iteration are calculated 
directly from the final orbit. We'll see below another application of Eq. 6.28. 

6.2.3 Normal Equations Solutions 

In order to solve the normal equations the normal matrix N may be (or not) inverted. Here we 
can make use of the fact that a normal matrix is always symmetric and positive-definite. These 
two properties make it possible that the normal matrix can be decomposed and inverted using 
the Choleski's decomposition method which we will briefly explain below. The theory given 
here is based on RD-9 and RD-25. 

Let's express Eq. 6.12 as: 

 

being: 

 

N is a (nxn) matrix, X is a (nx1) matrix and B is a (nx1) matrix. The first step of Choleski's 
decomposition consists of factorizing N as: 

 

where L and LT are lower and upper triangular matrices, respectively. L is also called a square 
root of N. Every positive-definite matrix has a square root. The elements of L can be obtained 
by expanding Eq. 6.30 and solving term by term (see RD-9 and RD-25). The normal equations 
can be written then as: 

 

Defining matrix R as: 

BXN =⋅  Eq. 6.29
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TLLN ⋅=  Eq. 6.30

BXLL T =⋅⋅ )(  Eq. 6.31

XLR T ⋅=  Eq. 6.32
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Eq. 6.29 can be expressed as: 

The elements of R can be obtained using a forward recursion relation in Eq. 6.33. After R has 
been solved, the elements of X are obtained using a backward recursion in Eq. 6.32. Choleski's 
decomposition can be very efficiently implemented in a computer program to both solving the 
normal equations and finding the inverse of the normal matrix. 

Thus, when the lower decomposed matrix has been inverted, the inverse of the original matrix 
can be easily obtained using Eq. 6.34. 

 

6.2.4 'Consider' Parameters and Covariance Analysis  

In some applications it is interesting to evaluate how uncertainties in some parameters affect 
the estimation process, without estimating those parameters. These parameters are called 
consider parameters: they do not affect the final value of the estimated parameters, but they do 
affect the estimate of their covariance matrix. 

Let's assume first that all parameters will be estimated and calculate the corresponding normal 
matrix N. The normal equations can be expressed as in Eq. 6.29. If we split now the increment 
in the extended state vector, X, in estimated (e) and consider (c) parameters and we assume that 
a-priori e and c parameters are uncorrelated, Eq. 6.29 can be expressed in the form: 

where: 

 

Expanding Eq. 6.35 the estimated parameters can be expressed as: 

 

BRL =⋅  Eq. 6.33

TTT LLLLNLLN )()( 11111 −−−−− ⋅=⋅=→⋅=  Eq. 6.34
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Let's now define the sensitivity matrix as: 

 

If we now take into account that consider parameters do not affect the final value of the 
estimated parameters, it can be shown (RD-25) that Eq. 6.36 becomes: 

 

and the covariance matrix of the estimated parameters, affected by the consider parameters is 
(RD-9): 

 

where cP0  is the a-priori covariance matrix of the consider parameters. Note that Eq. 6.38 is 
exactly the same as the normal equations (Eq. 6.12): consider parameters don't play any role 
here. 

The practical application of Eq. 6.38 and Eq. 6.39 is the following: the matrix of observation 
equation coefficients, F, is calculated for both estimated and considered parameters and 
submatrices Ne and Nec of the normal matrix N are calculated using F and the a-priori 
covariance matrix of all considered and estimated parameters (Eq. 6.14). Matrix Ne is then 
inverted and used to calculate the increment in the state vector of estimated parameters X in the 
usual way (using Eq. 6.12or Eq. 6.38). After convergence, the covariance matrix of the 
estimated parameters, eP0̂ , is calculated using Eq. 6.15. This covariance matrix is then 
corrected to account for the consider parameters using Eq. 6.39. 

The above described process is the basis of covariance analysis, which is the study of how 
coverage and accuracy of observational data, estimation arc length and uncertainties in model 
parameters; affect the accuracy of the orbit determination process. For this purpose, a satellite 
tracking strategy is selected (for example, in an earth-observation mission, a polar station 
generating range and range-rate microwave observations whenever the satellite is visible), 
observations are simulated according to this strategy together with an a-priori observation 
covariance matrix Q0. An a-priori uncertainty (covariance matrix) of the parameters that will 
not normally be estimated during a normal orbit determination arc (for example, tidal or 
gravity coefficients, station coordinates...) is evaluated, cP0 . These parameters are taken as 
consider parameters, an arc length is selected, and the process described above is followed in 
order to obtain the covariance matrix of the parameters that will be estimated during a normal 
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orbit determination arc, *
0̂eP . An analysis of this matrix gives an estimate of what accuracy can 

be expected in the orbit determination scenario under study. 

 

6.2.5 Epoch dependent parameters estimation 

Especially when dealing with GNSS data, the estimation of epoch dependent parameters is 
widely used in the orbit determination process. 

The parameters considered as epoch dependent parameters are those that only affect the 
estimation of the parameters present at the same estimation epoch. For instance, GNSS clocks 
are normally estimated in a snapshot process; this means that each estimated clock bias in the 
clock history of a certain clock in the process does not depend of the rest of the clock history. 

As the parameters are estimated per epoch, the parameters can only affect the estimation of the 
parameters that happen at the same epoch. Thus, all the parameters at one single epoch can be 
eliminated from the normal equations. 

By eliminating the epoch dependent parameters epoch by epoch from the normal equations, the 
final linear system to solve has a much smaller size. 

In a similar manner as for Eq. 6.35, If we split now the estimated parameters, in non-epoch-
dependent (e) and epoch dependent parameters (epoch) parameters and we assume that a-priori 
epochs are uncorrelated among themselves, Eq. 6.29 can be expressed in the form: 

 

being p the number of epochs to compute. 

This is the system to solve: 
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Eliminating the epoch by epoch, and introducing their contribution 

being: 

Thus, the epoch dependent parameter are eliminated and set in the non-epoch dependent part of 
the normal equations. Once all epochs have been eliminated, the resulting normal equations in 
Eq. 6.41 (first part of them) are solved to obtain the estimate of the non-epoch dependent 
parameters. With such estimate eX , the second part of those normal equations is solved, 
obtaining the solution for the epoch dependent parameters. 

Therefore, as the parameters can be eliminated epoch by epoch, one single epoch must be kept 
in memory while solving normal equations. However, to solve epoch dependent parameters 
afterwards, the matrices and must be re-accumulated epoch by epoch in order to solve the 
epoch dependent parameters for each epoch. 

 

6.3 Normal Equation Stacking and Multi-Arc Methods 

Some parameters can only be estimated ("observed") processing observations over a long span 
of time (from months to years), for example station coordinates or geopotential coefficients. It 
is not practical in these cases to process a unique long orbit determination arc because this 
would require long computation times, inverting large matrices and having to deal with huge 
observation datasets. Moreover, it can also be interesting to estimate this kind of parameters 
based on using observations of several satellites. 

6.3.1 Method 1 (Old multiarc, no longer used in NAPEOS) 

This method is based on [Eq. 6.25] and [Eq. 6.24]. 

Let's assume then that we have a number k of arcs containing observations, not necessarily of 
the same satellite. We are looking for a solution that gives the best estimate of k sets of 
parameters associated only with individual arcs (satellite state vector, drag coefficient, 
observation bias...) and a set of geodetic parameters that are common to all arcs (station 
coordinates, geopotential coefficients). 
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The normal equations are also applicable to this case, but their direct solution is not optimal 
because it involves a large number of parameters and a large number of observations. A more 
convenient solution to the problem is then necessary. Eq. 6.29 can be expressed as: 

 

where Xi is the matrix of estimated parameters associated with arc i and XG is the matrix of 
geodetic parameters common to all arcs. 

Let's assume now that the a-priori information of arc and common parameters is independent, 
which means that the a-priori covariance matrix of the estimated parameters is: 

 

It is also valid to assume that the observations of different arcs are uncorrelated, that is: 

 

The matrix F of observation equation coefficients has the form: 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

G

k

G

k

B
B

B
B

X
X

X
X

N MM
2

1

2

1

 Eq. 6.43

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−

−

−

−

1
0

1
0

1
02

1
01

1
0

0

0

02

01

0

000
000

000
000

,

000
000

000
000

G

k

G

k

P
P

P
P

P

P
P

P
P

P

L

L

MMOMM

L

L

L

L

MMOMM

L

L

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

−

−

−

−

1
0

1
02

1
01

1
0

0

02

01

0

00

00
00

,

00

00
00

kk Q

Q
Q

Q

Q

Q
Q

Q

L

MOMM

L

L

L

MOMM

L

L

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

kGk

G

G

FF

FF
FF

F

L

MMOMM

L

L

00

00
00

22

11

 



 
NAPEOS 
Mathematical Models and Algorithms 

Document No:  

Issue/Rev. No: 

Date : 

Page : 

DOPS-SYS-TN-0100-OPS-GN 

1.0 

5-NOV-2009 

81 

 

 

where Fi are the partial derivatives of the observations of arc i with respect to the parameters of 
arc i, and FiG are the partial derivatives of the observations of arc i with respect to the common 
parameters. The rest of the elements of F are zero because the observations of one arc do not 
depend of the parameters of any other arc. The normal matrix has the following arrow form: 

where: 

 

Eq. 6.43 can be then expressed as: 

where: 

 

Expanding Eq. 6.45 and regrouping terms leads to: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

GG
T

kG
T

G
T

G

kGK

G

G

NNNN
NN

NN
NN

N

L

L

MMOMM

L

L

21

22

11

00

00
00

 

ii
T

iii FQFPN ⋅⋅+= −− 1
0

1
0  

iGi
T

iiG FQFN ⋅⋅= −1
0  

ii
T

iG
T

iG FQFN ⋅⋅= −1
0  

∑
=

−− ⋅⋅+=
k

i
iGi

T
iGGGG FQFPN

1

1
0

1
0  

Eq. 6.44

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

G

k

G

k

GG
T

kG
T

G
T

G

kGK

G

G

B
B

B
B

X
X

X
X

NNNN
NN

NN
NN

MM

L

L

MMOMM

L

L

2

1

2

1

21

22

11

00

00
00

 Eq. 6.45

)ˆ( 00
1

0
1

0
k

iiiii
T

ii XXPYQFB −⋅+Δ⋅⋅= −−  

)ˆ( 00
1

0
1

1
0

k
GGG

k

i
ii

T
iGG XXPYQFB −⋅+Δ⋅⋅= −

=

−∑  
Eq. 6.46



 
NAPEOS 
Mathematical Models and Algorithms 

Document No:  

Issue/Rev. No: 

Date : 

Page : 

DOPS-SYS-TN-0100-OPS-GN 

1.0 

5-NOV-2009 

82 

 

 

being: 

 

The solution to the problem can be obtained as follows: 
1. Solve each arc separately estimating only the arc parameters but calculating the 

observation equation coefficients (matrices Fi and FiG) for all parameters (arc and 
common). After convergence, the estimated state vector iX 0

ˆ , its a-priori value iX 0  its 
initial covariance matrix, P0i, and the last iteration value of the arc residuals iYΔ , their 
a-priori covariance matrix Q0i and Fi and FiG are stored. Note that the a-priori values of 
the common parameters X0G must be known on each arc in order to calculate FiG. 
Moreover they must be the same for all arcs and the same as the a-priori value used in 
step 3. 

2. After processing all of the arcs, matrices Ni, NiG and NGG are computed using Eq. 6.44. 
Then, matrices Ni are inverted and matrices Bi are calculated. 

3. Eq. 6.47 is solved in one iteration using X0G as a-priori value of the common 
parameters: 

 

The a-posteriori covariance matrix of the common parameters is: 

 
4. The estimated state vectors of each arc obtained in step 1 are corrected using Eq. 6.47: 
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The new covariance matrix of the arc parameters is: 

 
5. The residuals can be recomputed to take into account the new values of the estimated 

parameters using Eq. 6.28: 

 

Step 1 implies the storage of one observation equation coefficient per observation and per 
parameter (arc and common). In addition a residual per observation must be also stored. It is 
clear then that for problems estimating a large number of parameters and/or processing a large 
number of observations the storage requirements would become enormous.  

An alternative to step 1 is to solve each arc storing matrices Ni, NiG and the contribution to NGG 
and also Bi and the contribution to BG, instead of iYΔ , Q0i, Fi and FiG. The rest of the steps 
would be the same. Matrices Ni, Ni

-1 and Bi have to be calculated anyway for each arc because 
they are necessary to solve the estimated parameters in Eq. 6.12. The storage requirements of 
this alternative are clearly orders of magnitude smaller. A disadvantage is that step 5 cannot be 
done anymore, that is, it is not possible to estimate what is the change in the observation 
residuals due to the improvement of the estimated parameters. 

6.3.2 Method 2 (Old batusi, no longer used in NAPEOS) 

Both arc and common parameters are estimated on each arc using no a-priori covariances for 
any of the parameters. The normal equations for each arc i can be expressed as: 
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Expanding Eq. 6.48 and substituting we obtain: 

 

where: 

 

Let's assume that after convergence has been reached for each arc, we do an extra iteration 
such that the improved common parameters are the same for all arcs. Eq. 6.49 would then 
become: 

 

Where GX 0
ˆ  are the improved parameters we are looking for and i

GX 0
ˆ  are the values obtained 

on each arc after convergence. Eq. 6.50 cannot be combined because the i
GX 0

ˆ  are different for 
each arc. Let's assume that the extra iteration is done from an a-priori value GX 0 . Eq. 6.50 can 
be rewritten as: 
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Adding Eq. 6.51 for all the arcs yields: 

 

from which: 

 

where k is the number of arcs. A-priori information of the covariance of the global parameters 
can be introduced inEq. 6.53, which becomes: 

 

The practical application of the above formulae is the following: the different arcs are solved 
estimating both arc and common parameters and matrices Ng

*i, Bg
*i and the estimate of the 

common parameters i
GX 0

ˆ  are stored. New a-priori values GX 0  are selected for the common 
parameters and contributions to the right-hand side of Eq. 6.54 are evaluated for each arc. After 
that Eq. 6.54 is solved to obtain the final estimate of the global parameters, GX 0

ˆ . The a-
posteriori covariance matrix of these parameters is of course, from Eq. 6.54: 

 

6.3.3 Method 3 (NEW MULTIARC, normal equation stacking) 

The normal equation handling and stacking methods are based on the theory given in RD-35. 

Both arc and common parameters are estimated on each arc. The normal equations for each arc 
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where: 

 

Algorithm: 

whence: 

where: 
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6.3.4 Parameter preelimination 

The method of pre-elimination of parameters is a basic tool to reduce the dimension of the 
normal equation system without loosing information. Only the information about the pre-
eliminated parameters is lost. With a separation of the parameter vector x into the vectors x1 
and x2 we may write the NEQ system in the following form: 
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Evaluating the matrix multiplication and adding the resulting two equations gives: 

( ) 1112
1

22121121
1

221211 zxNzNNzxNNNN ~~short   or    =−=− −−  

 

This new NEQ is reduced by the parameter vector x2. However, thanks to the correction terms 
the resulting NEQ still contains the full information coming from the pre-eliminated 
parameters x2. 

 

6.3.5 Parameter transformation within normal equations 

The transformation of parameters is especially important for the stacking of consecutive orbit 
arcs (and also used in ambiguity fixing methods). Its basic theory is as follows: 

Starting from the normal equation expressed as:  
zNx =  

 

Transforming this normal equation set to a new set of estimates x~  (or also xΔ~ ). The relation 
of the original estimates and the new estimates can be written as: 

cxBx += ~  
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Where: 

x The original estimates. 

x~  The transformed estimates. 

B The n x n transformation matrix with n rows and n columns. 

c A n x 1 vector of constants with n rows. 

The transformed normal equation matrix can then be written as:  

zxN ~~~ =  

 

Where: 

NBBN T=~   The transformed normal matrix. 

Nc)(zBz T −=~  The transformed RHS (Right Hand Side). 

 

6.3.6 Combination of consecutive orbital arcs 

In order to stack consecutive NEQ systems in which the estimated satellite orbit parameters are 
made continuous at the NEQ boundaries (i.e. from various sets of consecutive state vectors, we 
get just one at the beginning of the first arc, but based on the information of all the arcs) the 
theory of parameter transformation  is used. 

The transformation matrix (B) and the vector of constants (c) are derived by requesting that the 
satellite positions from both NEQ systems are identical for a certain time t. This may be written 
as: 

),(),( 2211 q,ryq,ry tt =  

 

For continuity of the satellite orbits the dynamical satellite parameters, e.g., solar radiation and 
drag, have to be identical as well: 

21 qq =  

 

Where: 

),( ii q,ry t  Satellite position function (e.g., orbital model) as function of time and the a 
priori orbit parameters. 

t  The epoch for which the continuity of the state vector is requested 
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ir  The state vector of the satellite of NEQ system i given for a time it  

iq   The dynamical orbit parameters of NEQ system i. 

The linearised observation equation for the satellite positions may be written as: 
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The linearised observation equation for the dynamical parameters may be written as: 

iii Δq qq
0
+=  

If we demand continuity of the estimated orbital parameters from two NEQ files, as given 
above, we can now write this as: 
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And for the dynamical parameters as: 

2211 Δq qΔq q
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+=+  

Putting both equations together we can write this in matrix form as: 
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This may be written in the following simplified form: 
cxPOx += ~  

If we want to write this in the form of the transformation equation cxBx += ~  we get: 

cOxPOx 11 −− += ~  

Where: 
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So to be able to combine the orbital estimates from two different NEQ systems to result in one 
unique and continuous set of estimates over the time interval covered by the two NEQ systems 
we need to the following information: 

00 ii q,r  The a priori state vectors and dynamical parameters used for generating the 
different NEQ systems. 

)q,r,y(
00 iit  The position and velocity vector of the satellites at the selected point in time (t) 

where we enforce the continuity of the orbits.  

r
)q,r,y(

00 ii

∂

∂ t
 The partial derivatives with respect to the satellite state vector at the selected 

point in time (t) 

q
)q,r,y(

00 ii

∂

∂ t
 The partial derivatives with respect to the dynamical satellite parameters at the 

selected point in time (t) 

 

To enable this orbit combination in Napeos the saved normal equation systems must contain 
this information. The main assumption in this case is that the orbit combination will always be 
based on combining consecutive NEQ systems. It should therefore be sufficient to save the 
above information only for the very first and the very last epoch of the NEQ. However, the last 
epoch of a NEQ should be the same as the first epoch of the next consecutive NEQ.  

 

6.3.7 Converting pass parameters in arc parameters 

The starting point is the already computed normal equations 
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and the )( ,kji nN =  are the subsections containing the partial derivatives with respect to the 
parameters estimated by pass (or time interval) and that are to be estimated by arc. And the 
summations on 'j' represent the 'n' elements not participating in the conversion. 

The *ˆ
iX  represents for 'i' a vector whose all identical components, *ˆ

iβ , are the new arc 
estimate of the grouped parameter 'i'. 
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Expanding the previous equation in all their components and taking into account that *ˆ
iX  and 

iX  have all their elements identical (in kjn ,  first index denotes column) 

 

Whence, adding all equations for the same parameter 

 

The final common value for each parameter being grouped is 

 

The resulting new values for the parameters not being re-estimated are 
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6.3.8 Ground Station Velocity Estimation 

The theory of parameter transformation shall be used to introduce the station velocities. For 
this purpose the position of the station shall be represented as an initial position plus a velocity 
times the time. Since we are introducing a new type of parameter, a minimum of two 
consecutive NEQs to avoid singularity is required (this should not be a problem since it is 
expected that the NEQs to be processed shall correspond to one or two years). It is assumed 
that the influence of the station velocity in the sequential solution is negligible. 
Mathematically, starting from a system defined by: 

where N represents the normal equations, x the parameters to estimate and b the right hand side 
of the system. Subindex 1 represents all the parameters except the station positions, and 
subindex 2 corresponds to the station positions. 

Representing the position of the stations as: 

tvxx Δ+= 2202  

Being Δt the time span covered by the individual NEQ.  

The resulting system of equations is: 

So transforming the NEQ to this system (and ensuring same reference position for the initial 
position of the station in the consecutive equations), the sequential NEQs are stacked. 
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Eq. 6.62
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6.3.9 Fixed Orbit 

In the above sections it was always assumed that the satellite initial state vector (position and 
velocity) is being estimated and propagated at every iteration, together with the variational 
partials. 

However, if the satellite orbit (position and velocity) is already available it is possible to use all 
the methods described above in the same way. Only non-dynamic parameters can be estimated 
in this case because the estimation of dynamic parameters (satellite state vector and force 
model parameters) requires additionally the evaluation of variational partials. 

In this case the observation equation coefficients of matrix F and the computed observations 
are calculated using the satellite position and velocity from the available orbit and there is no 
need to propagate the orbit every new iteration. Note however that the solution of normal 
equations is still iterative because matrix F and the residuals YΔ  depend also on the estimated 
parameters themselves. 

 

6.4 Sequential Estimation 

In sequential estimation observations are processed one by one or in small groups as soon as 
they are received and estimates of the satellite state vector and parameters at the observation 
time are evaluated. One advantage of this approach is that the orbit can be calculated in near-
real time. Another advantage is that the dimension of the matrix to be inverted will be equal to 
the number of observations processed: if observations are processed individually only scalar 
divisions will be required. Sequential estimation methods are described in RD-22, RD-26, and 
RD-31. For sequential estimation normal equation stacking may be used but a Kalman filter 
might be better suited, depending on the application. 

 

6.4.1 Extended Kalman Filter 

In the problem of batch estimation described in section 6.2, the estimate of the satellite state 
vector at a time t later than the epoch t0 is obtained by propagating the value of 0X̂  obtained in 
the last iteration. The Kalman filter on the other hand estimates the state vector at t directly 
based on all observations up to this time 

Let's assume now that at some time t1 an optimal estimate of the state vector (extended) 1X̂  
and its covariance matrix 1̂P  are known, and a set of q observations taken at a later time t2 is 
received, their covariance matrix being Q02. The extended Kalman filter uses the following 
equations to evaluate the best estimate of 2X̂  and 2̂P : 
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where *
2X̂  is the propagation of 1X̂ , 2YΔ  is the residual matrix of the observations at t2, F2 is 

the matrix of observation coefficients of the observations at t2. 2YΔ  and F2 are calculated using 
*

2X̂ . Note that F2 are the derivatives of the observations at t2 w.r.t. the parameters at t2, 
therefore no variational partials are required in their evaluation. Matrix K2 is the gain matrix 
and it is given by: 

 

),( 12 ttΦ  is the transition matrix of the parameters at t2 w.r.t. the parameters at t1, and it is 
similar to the one defined in Eq. 6.23 but extended to all the parameters. If we partition the 
vector of estimated parameters in satellite position/velocity, dynamic parameters and non-
dynamic parameters, matrix Φ  can be expressed as: 

 

φ  is the (6x6) transition matrix of the satellite state vector (position and velocity), as described 
in Eq. 6.23. ψ  are the partial derivatives of the satellite state vector w.r.t. the dynamical 
parameters (except of course the satellite state vector itself which is already considered in φ ). 
Take into account that: 

 

That is, matrix Φ  can be evaluated by integration of the variational equations from t1 to t2. 

Eq. 6.65 can be used recursively to estimate K,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ
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from kP̂  using second equation in Eq. 6.65 and then improved with observations using third 
equation in Eq. 6.65. There are no iterations involved in this process, unlike batch estimation. 
A disadvantage of this method is that propagation has to be restarted after each observation or 
set of observations has been processed. 

Note that the matrix to be inverted in Eq. 6.66 is of dimension (qxq). In the case q=1 the filter 
equations are significantly simplified since the inversion of the matrix needed in Eq. 6.66 to 
compute the gain matrix is reduced to a scalar inversion. If it can be shown that the result of 
processing the q observations simultaneously is the same as if these observations are 
sequentially processed. 

Because of computer round-off errors, 2P̂  as calculated in third equation in Eq. 6.65 can 
become non-positive definite and therefore meaningless. An alternative is to use the Joseph 
algorithm for its computation: 

 

Eq. 6.67 requires more computation than third equation in Eq. 6.65, but ensures that 2P̂  will 
remain positive definite. 

Due to computer round-off, matrix will tend to zero as more observations are processed. This 
in turn will cause the gain matrix to approach zero (see Eq. 6.66) and the estimation algorithm 
will become insensitive to any further observation, which will lead to filter divergence. One 
way of preventing the filter from diverging is to add a certain level of process noise to the 
system model to account for the model error contributions. Second equation in Eq. 6.65 
becomes then: 

 

where R2 represents the process noise. The addition of process noise prevents the covariance 
matrix from approaching zero, therefore preventing the gain matrix from approaching zero. 
The choice of the appropriate level of process noise is largely heuristic and depends to a large 
extent on what is known about the unmodelled state parameters. 

An alternative to these sometimes ad hoc stabilization techniques is to modify or replace the 
algorithm by one that is mathematically equivalent but numerically better conditioned. The 
square root information filter (SRIF) is such a solution. 

TT KQKFKIPFKIP 202222
*

2222 )(ˆ)(ˆ ⋅⋅+⋅−⋅⋅⋅−=  Eq. 6.67

212112
*

2 ),(ˆ),(ˆ RttPttP T +Φ⋅⋅Φ=  Eq. 6.68
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7 EARTH OBSERVATION 

7.1 Introduction 

For Earth Observation missions, the low polar near circular orbit is the most popular used. The 
major advantage for such an orbit is that the combination of the Earth’s rotation about its axis 
and the spacecraft’s orbital motion around the Earth results in very complete scanning of the 
globe. Moreover low polar orbit allows a close inspection of any point on the Earth’s surface as 
described in RD-1. 

For most of payload instruments mounted on the spacecraft to observe the Earth, the point on 
the Earth’s surface that is observed depends only on the position of the spacecraft or on its 
position and direction of travel. To ensure that the Earth’s surface is observed in a regular and 
systematic manner, a certain repeat pattern has to be maintained, such that the spacecraft 
follows the same path relative to the Earth and therefore the same point can be observed 
several times. As a first approximation, for the spacecraft to be in a periodic orbit relative to the 
rotating Earth, the spacecraft orbital period (P) must be a rational fraction n/m of the Earth’s 
spin period (Ψ), such that after m spacecraft orbits and n Earth rotations, the spacecraft will be 
over the same point and its motion relative to the Earth will be repeated.  

However it is known that some perturbations are acting on the spacecraft such that this 
repeated pattern can be affected. For low polar orbits major perturbations to take into account 
can be stated as the perturbations caused by the Earth Gravity Field, caused by the attraction of 
the Sun and Moon, and the air drag. 

Due to the Earth Gravity Field, mainly the Earth’s oblateness term, there are some 
perturbations acting on the spacecraft orbit. These are: 

• The precession of the orbital plane. This can be selected to be equal to the mean angular 
rate of the Earth in its orbit around the Sun. Such an orbit is called Sun-synchronous. 
The advantage of this Sun-synchronisation for Earth observation satellites using optical 
instruments is that the lighting conditions for the surface being overflown remain 
comparatively constant. For other satellites without these optical instruments, the 
advantage lies in the spacecraft solar panels that need only be rotated around one axis to 
maintain pointing of the Sun’s direction. 

In order to have a repeated pattern, the discussion above is valid, but the orbital period 
(P) must be interpreted as nodal period (i.e. time between two consecutive crossings of 
the equatorial plane from south to north) and the Earth’s spin period (Ψ), must be inter-
preted as the spin rate of the Earth relative to the precessing orbital plane. 

• A periodic perturbation repeating each orbital revolution, which will generate a 
cumulative deformation of the orbit shape. For a near circular orbit, what is intended is 
that the spacecraft has equal altitudes for consecutive passes over the same area. After a 
time, the deformed orbit would have essentially the same orbital period, but the altitude 
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shall have varied, and therefore the spacecraft velocity would be less constant, 
increasing in parts with reduced altitude and decreasing where the altitude has 
increased. 

The amount of deformation will be quite sensitive to the precise shape of the initial 
orbit. It is possible in practise to select an initial orbit such that this deformation is 
essentially zero. Such an orbit is called frozen orbit. With an optimal frozen orbit, all 
perturbations associated with the Earth’s gravitational field will essentially be periodic, 
and therefore after n days and m nodal orbits the path relative to the Earth is repeated 
just the same. 

Due to the gravitational forces of the Sun and Moon, the orbit’s mean inclination will decrease 
slowly. Therefore inclination correction manoeuvres are needed to compensate for these 
reductions. 

Due to air drag, the spacecraft’s orbital velocity will be reduced, and therefore its altitude and 
the nodal period. This drag is strongly dependant on the solar activity, which is difficult to be 
predicted. Therefore regular orbit maintenance manoeuvres are necessary in order to 
compensate the air drag. 

7.2 The Reference Orbit. Target Computation 

As derived from the discussed above, in absence of air drag and Sun and Moon gravitational 
perturbations, it is possible for a spacecraft in low polar near circular orbit to have almost 
repetitive orbits and therefore a repeat pattern. Such theoretical orbit is referred to as the 
reference orbit and shall be a Sun-synchronous, frozen orbit, with a nodal period equal to a 
rational fraction n/m of the Earth’s spin period relative to the precessing orbital plane. This 
reference orbit, expressed in a fixed geodetic coordinate system will define the reference 
ground track. 

However accounting for air drag and Sun and Moon gravitational perturbations this reference 
ground track can not be followed by the spacecraft unless considering certain tolerances. The 
maximum deviation allowed from this reference ground track defines the deadband. For Earth 
Observation missions the main goal and therefore the target, is to maintain the spacecraft 
within this deadband. Therefore the computation of the reference ground track is the major 
step to define the target for this kind of mission. 

7.2.1 Repeat Pattern 

As discussed above, a first approximation to a repeat pattern could be to consider the spacecraft 
orbital period (P) as a rational fraction n/m of the Earth’s spin period (Ψ). Therefore an 
approximate vale of the semi-major axis (a) of the reference orbit is directly derived. 
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Ψ=
m
nP  where 

μ
π

3

2 aP =  and seg0.86400=Ψ  Eq. 7.1

 

7.2.2 Sun-Synchronous Orbit 

The precession rate of the orbital plane can be approximately computed, accounting for the 
dominant oblateness parameter J2 with the following expression (RD-12). 

 

i
ea

R
a

J
dt
d cos

)1(2
3

2

232 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=
Ω

=Ω
μ&  Eq. 7.2

 

where 
Ω  is the right ascension of the ascending node 

e  is the orbital eccentricity 

i  is the orbital inclination 

R  is the mean equatorial Earth radius 

Sun-synchronous orbits are those with a secular rate of the right ascension of the ascending 
node equal to the right ascension rate of the mean sun: 

 

day
deg0.9856ΩSUN =&  Eq. 7.3

 

Therefore for a satellite orbit to be sun-synchronous, the inclination i, semi-major axis a and 
eccentricity e must satisfy the above relation. For near circular orbits, the eccentricity vanishes 
(e = 0), and since the semi-major axis a is known from the period, using equations Eq. 7.1, Eq. 
7.2 and Eq. 7.3, an approximate value of the inclination i can be derived. 

7.2.3 Local Time at Node Crossing 

The local time of the descending node is defined as the UTC time of the node passage 
corrected with the fraction of a day that corresponds to the angle between the node and the 
Greenwich meridian. The origin of the UTC time has been selected such that the Sun is close to 
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zenith at longitude 180o every midnight (00:00 Z). Therefore an approximate direction to the 
Sun (S) (projection of the direction to the equatorial plane) is 

º180º360 +⋅−= tGMTS  

where t is UTC time measured in days and GMT is the Greenwich Meridian Time at the initial 
epoch t: 

2202020 tOMQtOMTSTDGMT ⋅+⋅+=  

The local time of a point on the Earth’s surface situated vertically beneath the spacecraft is the 
dihedral angle between the meridian plane containing the spacecraft and the meridian plane 
containing the Earth-Sun direction. According to this definition the local time at ascending 
node LTA would be SLTA −Ω=  and at descending node º180+= LTALTD . This angle is 
equivalent to an hour using the following rule ( h24deg360 ↔ ), and the convention 

deg012 ≡h . 

Therefore to constraint the local time at ascending or descending node crossing is completely 
equivalent to fix the right ascension of the ascending node Ω . 

7.2.4 Overfly an Earth Point 

For some Earth Observation missions (e.g. ERS-1), the reference orbit can be constrained to 
overfly an Earth point. This point is defined by its geodetic coordinates (Long, Lat). Its 
argument of latitude (Latar) is derived as: 

LatiLatar sinsinsin =⋅  

The projection of this angle in the equatorial plane (Latarp) is computed as: 

Latar
iLatarLatarp

cos
cossintan ⋅

=  

The ascending node is now directly derived as: 
GMTLatarpLong ++=Ω  Eq. 7.4

 

The initial true anomaly ν corresponding with the Earth point, can be derived if the argument 
of perigee ω is known as follows: 

ων −= Latar  Eq. 7.5

 

7.2.5 Frozen Eccentricity Vector 

As demonstrated in RD-14 the necessary and sufficient condition for having constant altitudes 
for consecutive values of equal geocentric latitude is as the secular perturbation of the 
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eccentricity e and argument of perigee ω are zero. This is the well known problem of having a 
frozen orbit. 

The algorithm to calculate a frozen orbit is well described in references RD-13 and RD-14. 
Hereafter the major steps of the algorithm will be summarized, avoiding intermediate 
mathematical demonstrations.  

Firstly it is necessary to introduce the concept “eccentricity vector”. This is the vector with 
length equal to the eccentricity e pointing from the centre of the Earth to the perigee. With 
rectangular coordinates in the orbital plane defined by the node this vector is: 

( ) ( )ωω sin,cos, eeee yx ==
r  Eq. 7.6

 

An initial approximate orbit is integrated for an integer number of complete repeat cycles, and 
the averages of the eccentricity vector over the first and the last repeat cycle are computed. 
Assuming that the average eccentricity vector over complete repeat cycles follows a circle (or 
rather a polygon as demonstrated in RD-14, the centre of this circle with respect to the initial 
mean eccentricity vector can be computed using the formula: 

2
2

cot
0

21

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−Δ

=
e
Atee

eδ  
Eq. 7.7
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⎝

⎛
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=
e
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eδ  
Eq. 7.8

 

where: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−= 2

3

3
33

sin
4
51

2

sin3
i

a

iRJ
aA

μ

 

0e  is a reference eccentricity around which it is linearised. For this iterative algorithm it can be 
approximated by the mean eccentricity of the first repeat cycle 

R  is the mean radius of the equator 

( )21 , ee ΔΔ  are the components of the difference between the average eccentricity vector over 
the last and the first repeat cycle 

t  is the time between the starts of the first and last repeat cycle 
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( )21 , ee δδ  are the components of the difference between the centre of the circle and the average 
eccentricity vector over the first repeat cycle 

Therefore, ( )21 , ee δδ  is the increment that should be made to the mean eccentricity vector over 
the first repeat cycle to have no secular perturbation of the eccentricity vector. For the 
algorithm, this increment is applied to the initial osculating eccentricity vector resulting in 
approximately the same increment in mean eccentricity vector and the corresponding initial 
state vector in rectangular coordinates required for the numerical integration can be computed 
using the standard formulas. 

It is clear that if the mean eccentricity vector is constrained to a prescribed values ( )ypxp ee , , it 
is only necessary to propagate through the first repeat cycle, compute its mean eccentricity 
vector ( )11 , yx ee  and ( )21 , ee δδ  will become in: 

( ) ( ) ( )1121 ,,, yxypxp eeeeee −=δδ  Eq. 7.9

 

7.2.6 Algorithm 

Based on the discussions above, the final algorithm to compute the reference orbit and 
subsequently the reference ground track can be derived. It consists of the following steps: 

• The user shall supply the initial guesses of the orbital elements at a time, for the 
reference orbit, either directly or indirectly, via the items mentioned previously. 
Summarising: 

o Repeat pattern from which the semi-major axis a is derived. 

o Sun-synchronous from which the inclination i is derived. 

o Local Time at node crossing from which the right ascension of the ascending 
node Ω is derived 

o Overflying an Earth point at the indicated time, from which the right ascension 
of the ascending node Ω and the true anomaly ν are derived 

o An initial estimate of the eccentricity e and the argument of perigee ω is 
necessary. If no better information is available they can be set to values 
indicated in RD-14: 

i
aJ

RJ
e sin

2 2

3−=  

º90=ω  

For orbits similar to ERS-1 and ERS-2 a better estimate can be selected as 
mentioned in RD-14: 
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001165.0=e  

º90=ω  

Notice that if the right ascension of the ascending node Ω is derived from the 
local time at node crossing, it is necessary to provide the initial guess of the true 
anomaly of the reference orbit. 

• The initial estate vector shall be propagated for a number of repeat cycles as required 
for the frozen eccentricity vector algorithm. After the first repeat cycle, it is also 
obtained the Earth point overflown and the local time at node crossing. With this 
information the new orbital elements for the reference orbit can be adjusted as follows: 

o To repeat a pattern, the Earth point overflown at the starting time of two 
consecutive repeat cycle must be the same. If λΔ  is referred to the difference in 
longitude of the Earth point overflown at the starting time of two consecutive 
repeat cycle and corresponding to the same latitude, the semi-major axis a, can 
be modified in order to absorb this λΔ  as follows: 

P
TPE

Δ
Δ=Δ ωλ  and considering that 

a
a

P
P Δ
=

Δ
2
3  results in: 

T

aa
EΔ

Δ
=Δ

ω

λ

2
3

 

where 

Eω  is the Earth’s spin 

P  is the s/c orbital period 

TΔ  is the elapsed time 
o To maintain constant the local time at node crossing the inclination i can be 

adjusted as follows: 

i
a
J

RN
iiN

i
LTD

sin2
2
3

2
22

⊕

ΔΩ
=Δ⇒Δ

∂
Ω∂

=ΔΩ=Δ
π

 
Eq. 7.10

 

where 
LTDΔ  is the difference in the local time at node crossing at starting of 

two consecutive repeat cycles 

N  is the number of epeat cycles 
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⊕R  is the mean equatorial Earth radius 

o The increments to be done to the initial osculating eccentricity vector (involving 
eccentricity e and argument of perigee ω in order to obtain a more frozen orbit 
are derived as indicated in the frozen eccentricity algorithm in equations Eq. 7.7 
and Eq. 7.8. 

o Finally, the right ascension of the ascending node Ω and the true anomaly ω can 
be adjusted in order to ensure that the proposed Earth point is overflown at 
initial time, as described in previous section. 

• Previous steps are iteratively repeated until mentioned differences vanish, and it is 
obtained a frozen reference orbit which implement a repeat pattern and keep constant 
the local time at node crossing. 

7.2.7 Reference Orbit Synchronization After Spacecraft Injection 

The reference orbit and consequently the reference ground track are referred to an initial time 
indicated by the user. This reference ground track plus a tolerance define the deadband in 
which the spacecraft should remain. If there is no constraint for the spacecraft to keep this 
initial phase indicated in the reference ground track (e.g. ERS-1), it is clear that this phase can 
be adjusted considering the time and orbital elements at the injection of the spacecraft. 

Once that the injection state vector has been computed, it can be propagated backward up to the 
first ascending node crossing, and the corresponding longitude 0λ  will be selected. This will 
define the new origin of the reference orbit and the corresponding time, will be the one 
obtained in the backward propagation. Therefore the reference ground track has been 
synchronised considering the state of the spacecraft and time at injection and from now 
onwards the reference ground track and the spacecraft orbit shall have to maintain this 
synchronisation. 
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8 EARTH OBSERVATION ORBIT CONTROL 

For Earth Observation Missions the target to be achieved is defined in one of the following 
ways: 

• either the spacecraft should remain as long as possible inside of the deadband 

• either the spacecraft should overflow certain Earth points at a prescribed time 

• or a combination of both 

Manoeuvres shall have to be planned and performed such that the spacecraft reaches the 
proposed target, from its current state vector. Taking the assumption that the orbit is near 
circular, the Gauss equations become as follows RD-8: 

V
Vaa TΔ

≈Δ 2  

00 sincos2 αα
V
V

V
Ve NT

x
Δ

−
Δ

≈Δ  

00 cossin2 αα
V
V

V
Ve NT

y
Δ

+
Δ

≈Δ  

0cosα
V
Vi WΔ

≈Δ  

iV
VW

sin
sin 0αΔ

≈ΔΩ  

Eq. 8.1

 

The following notations and assumptions are used in the equations: 
• the velocity vector increments ( )WNT VVVV ΔΔΔ=Δ ,,

r
 qre represented by the three 

components, where ( )WNT ,,  is the orthonormal reference frame which is defined as 
follows: its origin is the centre of mass of the satellite, the axis T is aligned in the 
direction of velocity, the axis W is aligned in the direction of the angular momentum 
vector of the orbit and the axis N completes the trihedral. 

• the manoeuvres are performed with a single thrust, which is assumed to be 
instantaneous; the orbital point where the thrust occurs is located by its argument of 
latitude 0α . 

• the semi-major axis a which is present in the first equation may, to a first 
approximation, be taken as constant and equal to the initial value a0 (mean parameter) 
before correction. 
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• the orbit is assumed to be near-circular (this is the case with frozen orbits) and therefore 
the second order terms in e in the original Gauss equations have thus been disregarded, 
and it is even possible to consider the velocity V as constant if the first order terms are 
disregarded. 

 

R
R V

aP
a

VV πμ 2=⇒==  Eq. 8.2

 
• iΔ  and ΔΩ  are small. 

These equations shall be used to compute the velocity vector increments. 

8.1 Precession of the Orbital Plane 

The precession of the orbital plane, for a near circular orbit is obtained as follows: 

i
a
V

FJi
a
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a
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dt
d R coscos

2
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=Ω && μ  

where 2

2
3 RF =  

The total precession for an orbit revolution is: 

2
2 cos2

a
iFJ

P
π

−=Ω=ΔΩ &  Eq. 8.3

 

Resulting: 

2
2 sin2

a
iFJ

i
π

=ΔΩ
∂
∂  

3
2 cos4

a
iFJ

a
π

=ΔΩ
∂
∂  

Eq. 8.4

 

The change in the precession, after a time T, due to an out-of-plane manoeuvre parallel to the 
velocity vector WVΔ  at ascending (+) or descending (-) node can be evaluated as: 
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where N is the number of revolution in time T: 
a

TV
P
TN R

π2
==  

The change in the precession, after a time T, due to an in-plane manoeuvre parallel to the 
velocity vector TVΔ  can be evaluated as: 
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 Eq. 8.6

 

8.2 Change in Longitude and Latitude 

The change in longitude due to an in-plane manoeuvre TVΔ  can be evaluated as follows: 

P
TPEip Δ−ΔΩ=Δ ωλ  

where the first term of this equation ipΔΩ  is derived from the change in the precession due to 
an in-plane manoeuvre, and the second term is derived from the combination of the Earth’s 
rotation and the change in the orbital period corresponding to the in-plane manoeuvre. 

Considering that: 

R

T

V
V

a
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P
P Δ

=
Δ

≈
Δ 3

2
3  

The change in longitude can be finally evaluated as follows: 

T
R

E
ip VT
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iFJ Δ⎟⎟
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−=Δ

ω
λ 3cos4 32  Eq. 8.7

 

The change in longitude due to an out-of-plane manoeuvre WVΔ  can be evaluated as follows: 
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Wip VT
a

iFJ Δ±=ΔΩ=Δ 32
sinλ  Eq. 8.8

 

In this case, because of the out-of-plane manoeuvre does not change the orbital period, the 
change in longitude is only affected by the change in the precession of the orbital plane. 

The change in latitude due to an in-plane manoeuvre TVΔ  can be evaluated taking into 
account the relation between latitude δ and argument of latitude α=ω+ν, reflected in the 
following equation: 

isinsinsin αδ =  Eq. 8.9

 

Therefore, for a given latitude δ, it can be obtained the corresponding argument of latitude α 
as: 

⎟
⎠
⎞

⎜
⎝
⎛±=

i
a

sin
sinsin δα  

where the symbol (+) indicates the ascending part of the orbit and (-) the descending one. 

The argument is directly related with the orbital period as: 

NN Δ=Δ⇒+= παπαα 220  

And the change in the number of revolutions N due to an in-plane manoeuvre can be evaluated 
as: 
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and therefore the change in argument of latitude is obtained as: 

Tip VT
a

Δ−=Δ
3α  

And the change in latitude now can be obtained using Eq. 8.9 as: 

Tipip VT
a

i Δ−=Δ⇒Δ=Δ
δ
αδα

δ
αδ

cos
cos3sin

cos
cos  

In first approximation, there is no change in latitude due to an out-of-plane manoeuvre WVΔ . 
Because of the orbital period is not affected. 
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8.3 Frozen Eccentricity Algorithm 

According to the Gauss equations Eq. 8.1, the efficiency of a thrust along the radial component 
NVΔ , performed to correct the eccentricity vector, is half that of a correction made at a tangent 

to the velocity TVΔ . Therefore it will be assumed that only the latter manoeuvres shall be 
considered, RD-8. In the following it will be referred in-plane manoeuvres to manoeuvres 
performed in the velocity direction TVΔ . The Gauss equations become: 

0cos2 α
V
Ve T

x
Δ

=Δ  

0sin2 α
V
Ve T

y
Δ

=Δ  
Eq. 8.10

 

Previous equations show that the change in the eccentricity vector due to an in-plane 
manoeuvre TVΔ  is a vector which direction is defined by the argument of latitude of the 

spacecraft 0α  at the manoeuvre time, the module is 
V
VTΔ2  and the sense depends on whether 

the TVΔ  is positive (in the sense of the spacecraft velocity vector) or negative (just opposite to 
the spacecraft velocity vector). The graphic interpretation is displayed below. 

As derived from previous discussion, in order to obtain a predefined increment of the 
eccentricity vector erΔ , manoeuvres can be located at different argument of latitude 0α , but 
such that the sum of the change of eccentricity vector caused by each manoeuvre shall be the 
global eccentricity vector change erΔ . 

ΔVT

ANα0

ex ex0
–

α0

0

ey ey0
– eΔ

AN: Ascending Node
 

It is clear that the optimum solution requiring less global VΔ , for the same eccentricity vector 
change ( )yx eee ΔΔ=Δ ,r , shall be the one with all in-plane manoeuvres TVΔ  performed at 
argument of latitude α or α+π, where α denotes: 
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In the following it will be assumed that all in-plane manoeuvres TVΔ  are performed at 
argument of latitude α or α+π. 

The increments of eccentricity vector erΔ  shall be computed according to the theory described 
in RD-14, and briefly mentioned in a previous section of this document. Since the algorithm to 
compute the erΔ  is iterative, it implies that the computation of manoeuvres shall have to be also 
an iterative procedure. The algorithm consists of the following steps: 

• An initial guess should be provided for the argument of latitude α. This can be obtained 
as the corresponding argument of latitude for the estimated time for the first in-plane 
manoeuvre 

1TVΔ . 

• The orbit is propagated from the initial state up to the last manoeuvre. In the first 
iteration all in-plane manoeuvres are null. 

• The mean eccentricity vector 1er  of the first repeat cycle is obtained. This repeat cycle 
starts in the first descending node crossing after all manoeuvres are performed, and 
finishes in the closest descending node after a repeat cycle period. In the first iteration, 
it will be defined 10 ee rr

=  representing the mean eccentricity vector without considering 
any manoeuvre. 

• The mean eccentricity vector 2er  of the second repeat cycle is obtained. This repeat 
cycle starts approximately at the end time of the first repeat cycle plus an integer 
number of repeat cycles, in the closest descending node, and finishes in the closest 
descending node after a repeat cycle period. 

• For the first repeat cycle, 0erΔ  will be defined as the change in eccentricity vector due to 

the planned manoeuvres. Notice that at the firs iteration 00

rr
=Δe . 

( ) 010 00
, eeeee yx

rrr
−=ΔΔ=Δ  

00 ee r
Δ=Δ  

αα −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ

Δ
=

0

0atan0
x

y

e
e

 

If 
20
πα >  then 0eΔ  and 0α  shall be defined as: 

00 ee r
Δ−=Δ  
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παα −= 00  
• The change in the eccentricity vector necessary to obtain a frozen orbit is calculated 

according to the theory described in RD-14. Firstly it is defined the increment in the 
mean eccentricity vector between the two considered repeat cycles: 

( ) 121 11
, eeeee yx

rrr
−=ΔΔ=Δ  

The change in the eccentricity vector ( )yx eee ΔΔ=Δ ,r  shall be: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ−Δ=Δ

12
cot

2
1

11 e
Ateee yxx r  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ+Δ=Δ

12
cot

2
1

11 e
Ateee xyy r  

Adding this desired change in the eccentricity vector erΔ , to the change already 
obtained with the planned manoeuvres 0eΔ , results in the mean eccentricity vector 
desired for the next iteration: 

( ) 02 22
, eeeee yx

rrr
Δ+Δ=ΔΔ=Δ  

22 ee r
Δ=Δ  

ααα −−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ

Δ
= 02

2

2atan
x

y

e
e

 

If 
22
πα >  then 2eΔ  and 2α  shall be defined as: 

22 ee r
Δ−=Δ  

παα −= 22  

This 2α  is the increment to be done to the current argument of latitude for manoeuvres 
α . Therefore it is obvious that for next iteration the new value of the argument of 
latitude shall be ααα += 2 . 

The module of the change in the eccentricity vector shall be 02 eee Δ−Δ=Δ . 
• This iterative process should be repeated until the change in the eccentricity vector eΔ  

is small compared to 0eΔ , and the change in argument of latitude 2α  is small compared 
with the argument of latitude α . 
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8.4 Inclination and Ascending Node Change 

The Gauss equations Eq. 8.1 for inclination and right ascension of the ascending node change 
are: 

0cosα
V
Vi WΔ

≈Δ  

iV
VW

sin
sin 0αΔ

≈ΔΩ  

From these equations it is clear that the most efficient manoeuvres to change the inclination 

must be performed at ascending or descending node ( )παα == 00 ;0 , and to change the right 
ascension of the ascending node the most efficient manoeuvres have to be performed at 

⎟
⎠
⎞

⎜
⎝
⎛ ±=

20
πα . 

For Earth Observation missions it is not expected to have big changes in Ω. Firstly because the 
launch window is restricted to have a good value of Ω at the injection, and secondly because 
the spacecraft is forced to remain in the deadband, and this one has been defined taking into 
account that the local time at node crossing should remain constant. Therefore it is only 
necessary small tuning of the Ω, to keep the local time at node crossing inside a tolerance. This 
can be obtained at the same time of the inclination change, since the precession of the orbital 
plane is affected by the inclination. For out-of-plane manoeuvres WVΔ  performed at ascending 
or descending node the change in Ω due to the precession of the orbital plane is given before in 
Eq. 8.5. Therefore it can be assumed that out-of-plane manoeuvres shall be performed to 
change the inclination, and therefore at ascending or descending node, but taking into account 
also the change in Ω. 

For out-of-plane manoeuvres WVΔ  performed at node crossing, the change of inclination is 
obtained as: 

R

W

V
Vi Δ

±=Δ  

where (+) indicates that manoeuvre is at ascending node, and (-) at descending node. 

The size of the out-of-plane manoeuvre WVΔ  to be performed, accounting for a desired 
inclination change, and for correcting the local time at node crossing can be stated as follows: 

RWW iVVV ΔΔ=Δ Ω m  Eq. 8.11
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where ΩΔ WV  is the term to correct the local time at node crossing to be computed taking into 
account the precession of the orbital plane, and its calculation will be detailed in next section. 
The second term is to change properly the inclination. 

Since the spacecraft is forced to remain in deadband, sometimes it is more useful to define the 
change in inclination, instead of using iΔ , indicating a cross-track offset CTS to be obtained in 
the ground-track at orbital north pole. This is straight forward, since: 

R
CTSi =Δ  

8.5 Manoeuvres Computation 

The problem of the manoeuvres computation can be stated as to compute the timing and 
characteristics of a sequence of manoeuvres proposed by the user, in order to reach a defined 
target and fulfilling the problem constraints. 

As mentioned in previous sections of this document some assumptions have been taken into 
account in order to simplify the problem. Hereafter the major ones are summarised: 

• The orbit is assumed to be near circular. 

• Manoeuvres are performed with a single thrust, which is assumed to be instantaneous 
(impulsive manoeuvres). 

• The algorithm to compute the manoeuvres shall be iterative, since the algorithm to 
obtain a frozen orbit is iterative. 

• Out-of-plane manoeuvres WVΔ  are performed at node crossing. 

• Only in-plane manoeuvres, parallel to the spacecraft velocity vector, TVΔ  are to be 
used to the eccentricity vector control. In-plane manoeuvres along the radial component 

NVΔ  are not used since its efficiency is half that the first ones. 

• In-plane manoeuvres TVΔ  are performed at an argument of latitude α or α+π, being α 
the same for all manoeuvres. 

• All manoeuvres are performed at the beginning of the period in study, in a reserved 
time interval. The mean eccentricity vectors required for the eccentricity algorithm are 
computed for a repeat cycles after the manoeuvres reserved period. Also the Earth’s 
points to be overflown have to be referred to an epoch subsequent to this reserved 
period. 

The user shall propose a sequence of manoeuvres: 
• A number 0≥J  of out-of-plane manoeuvres 

jWVΔ  with k=1, ..., J, indicating for each 
one the approximate time/node to be performed. 
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• A number 0≥K  of in-plane manoeuvres 
kTVΔ  with j=1, ..., J, indicating for each one 

the approximate time to be performed. 

The location of the in-plane manoeuvres, as mentioned, is at argument of latitude α or 
α+π. Therefore, the number of unknown parameters is K+J+1. 

The user shall also define certain targets to be achieved after this sequence of 
manoeuvres. The most important are: 

• Desired change in inclination iΔ , or a cross track offset CTS to be obtained at orbital 
north pole. It is clear that this change can always be achieved with a single out-of-plane 
manoeuvre WVΔ  given by Eq. 8.11. 

However, due to manoeuvres constraints (e.g. maximum firing duration), sometimes it 
has to be broken down into several manoeuvres to be performed at consecutive 
ascending or descending nodes. In this case a criterion to split the manoeuvre should be 
considered. In fact, in case that J>1, the following should be satisfied: 

∑
=

Δ=Δ
J

j
WW j

VV
1

 

Therefore the number of unknown parameters becomes in K+1. 
• Desired local time at node crossing. This will be used to compute the term ΩΔ WV  

introduced in previous section. The global change in the right ascension of the 
ascending node due to in-plane and out-of-plane manoeuvres is given by equations Eq. 
8.5 and Eq. 8.6. The change in local time at node crossing is equivalent to a change in 
Ω. Therefore the following relation has to be fulfilled: 

LTVT
a

iFJVT
a

iFJ T

K

k
TK K

Δ=ΔΩ=Δ±Δ Ω
=
∑ 32

1
32

sincos4  Eq. 8.12

 

where LTΔ  is the change to be done in local time at ascending or descending node 
crossing. 

• Desired N Earth’s points to be overflown at an approximate time. Propagating up to this 
approximate time and afterwards up to the same latitude of the Earth point to be 
overflown, the shift in longitude ( )Nnn ,...,1=Δλ  is obtained for each one. The 
necessary in- plane manoeuvres 

kTVΔ , accounting for equations Eq. 8.7 and Eq. 8.8, 
shall fulfil the following relation: 

nWn

K

k
TK

R

E VT
a

iFJVT
Va

iFJ
Kn

λ
ω

Δ=Δ±Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− Ω

=
∑ 32

1
32

sin3cos4  Eq. 8.13
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Therefore the number of degrees of freedom becomes K+1-N. 
• Desired M Earth’s latitudes to be overflown at a prescribed time. It was described 

previously that these latitude can be easily converted to argument of latitude. 
Propagating until the prescribed time it can be obtained for each latitude the change to 
be done in argument of latitude ( )Mmm ,...,1=Δα . It is clear that the following relation 
has to be fulfilled: 

m

K

k
TK Km

VT
a

αΔ=Δ−∑
=1

3  Eq. 8.14

 

Therefore the number of degrees of freedom becomes K+1-N-M. 

The in-plane manoeuvres 
KTVΔ  are also constrained to obtain a frozen orbit. As discussed 

previously this implies two additional equations. The first one calculates the argument of 
latitude α in which all in plane manoeuvres should be performed. The second one establishes a 
relation between 

KTVΔ  and the change required in the eccentricity vector eΔ , as follows: 

( ) eVV R
K

k
TK

Δ=Δ±∑
= 21

 Eq. 8.15

 

where the sign (+) corresponds to manoeuvres 
KTVΔ  at argument of latitude α and the sign (-) 

to manoeuvres 
KTVΔ  at argument of latitude α+π. 

It is clear that the number of degrees of freedom become K-N-M-1. If this number is null, it 
means that the problem is completely defined. Therefore considering the system of 
simultaneous linear equations defined by equations Eq. 8.11, Eq. 8.12, Eq. 8.13, Eq. 8.14 and 
Eq. 8.15, the problem can be solved and the manoeuvres WVΔ  and 

KTVΔ  can be obtained as 
well as the timing for each of them. 

However if the number of degrees of freedom is greater than zero (K-N-M-1>0) the 
manoeuvres can also be computed taking into account an optimization criteria. 

8.6 Deviation of S/C with respect to Reference Ground Track 

The deviation of the S/C with respect the reference ground track, is defined as the 
perpendicular distance between the projection of the S/C position over the Earth’s surface, and 
the reference ground track. In order to ease the computation it would be advisable to provide 
the reference ground track position in the Geodetic System and the velocity in Earth Fixed 
System. 
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time

1 Km

dist

Deadband
Reference Ground Track

Current orbit

 
Now the calculation of the deviation (dist) of the S/C with respect the reference ground track, 
can be formulated in two different manners: 

• The first one would be to calculate such deviation for a given point of the ground track. 
Assuming that it is known the ground track velocity at that point, a plane can be defined 
passing through the ground track point and being perpendicular to the velocity (crossing 
plane). The orbit has to be propagated up to cross this plane, and the projection of the 
crossing point in the Earth’s surface is derived. The deviation from the reference orbit 
will correspond to the distance between this projected point and the ground track. 

Let t0 be the time to reach the ground track point defined as (long, lat) at the current 
cycle. The local vertical at that point is obtained as follows: 

( )latlonglatlonglatGTz sin,sincos,coscos ⋅⋅=  

Let RGT  and VGT  be the position and velocity in Earth Fixed System of the ground 
track point. The plane, then will be defined by its normal unit vector: 

( )
( ) zzVV

zzVV
n

GTGTGTGT

GTGTGTGTGT
⋅−

⋅−
=  

Finally the right hand tried is completed by the unit vector, in which the distance will be 
measured: 

zn

zn
t

GTGT
GTGTGT

×

×
=  

In order to compute by when the orbit crosses the plane, an iterative process will be 
applied starting by t = t0 and updating the time, and subsequently the orbit state, as: 

( )
nE

REn

GTV
GTRGTtt

⋅
−⋅

−=  
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where ER , EV  are respectively the position and velocity of the spacecraft at time t in 
Earth Fixed System. Once the previous process has converged, it can be derived the 
projection of the corresponding orbit point over the Earth Surface RR . Now the 
distance between the orbit and the ground track is computed as: 

( )RRt GTRGTdist −⋅=  
• The second one would be to calculate such deviation for a given S/C position. The 

problem now becomes in finding the ground track point, such that its crossing plane 
contains the S/C position. This can be done using an iterative process completely 
analogous to the one described in previous item. Once this ground track point has been 
found, the deviation from the ground track is computed as previously. 

Notice that in both cases it is required that the S/C orbit and the reference ground track are 
synchronised. 

8.7 Optimization of the S/C Remaining Time within Deadband 

In previous discussion, the manoeuvres are determined by the fulfilment of the constraints. 
When there are some degrees of freedom, then is possible to consider optimisation criteria. In 
this case the problem can be formulated as “to compute the sequence of manoeuvres such that 
the spacecraft remains as long as possible within deadband”. This clearly defines the 
optimisation criteria. In order to complete the formulation of the problem, the constraints to be 
considered and assumptions to be taken into account have to be stated. 

The optimisation problem will be solved using the OPXRQP optimisation routine (see [R18.]). 
For such, one has to define the function to be minimised, the equality and inequality constraints 
associated and if possible the partial derivatives of the function and constraints with respect the 
optimisation variables. 

8.7.1 Manoeuvre Sequence 

All assumptions mentioned in section 8.5 of this document are applicable to this optimisation 
problem. Manoeuvres are performed in a reserved period at the beginning of the optimisation. 
In-plane manoeuvres are performed at the same argument of latitude α or α+π. The size of this 
in-plane manoeuvres will become in the optimisation variables. 

8.7.2 Function to be Optimised 

The optimisation criteria have been clearly stated previously. Now a function has to be defined 
supporting such criteria. In principle one can think that function to be optimised is precisely the 
remaining time in the deadband. This function has been demonstrated in the SR phase of 
NAPEOS (RD-17), not to be suitable for such optimisation, because it requires very long 
propagation periods and causes no convergence for some cases. The function to be used is the 
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sum of the squares of the deviation of the orbit with respect the reference ground track. This 
distance will be evaluated at certain latitudes. 

( )∑
=

=
I

i
idistf

1

2  Eq. 8.16

 

It is clear that the minimisation of such a function, considering some constraints, is equivalent 
to maximising the remaining time within deadband. Such constraints will be mentioned in 
following section. 

8.7.3 Constraints to be considered 

The constraints concerning earth points or latitudes to be overflown and keeping frozen the 
eccentricity vector (Eq. 8.13, Eq. 8.14 and Eq. 8.15) are applicable to the optimisation. 
Constraints would be formulated as: 

0
2

=ΔeVR  

0=Δ nλ  

0=Δ mα  

Eq. 8.17

 

The first constraint will be considered in case that more than one in-plane manoeuvre are to be 
calculated. The second and third set of constraints, only in case that the user is interested in 
overflying certain earth points or latitudes. This defines the equality constraints of the 
optimisation problem, which relation with the optimisation variables is expressed in equations 
(Eq. 8.13, Eq. 8.14 and Eq. 8.15). 

Moreover some specific constraints must be taken also into account to consider additional 
characteristics such as: 

• The spacecraft must remain within a deadband defined along the reference orbit. 
Therefore this can be managed as a set of constraints to be fulfilled. The minimum 
period in which the spacecraft should remain within a deadband can be defined. The 
deviation from the current orbit with respect the reference ground track can be 
calculated at points within the previously defined period. Constraints would be 
formulated as: 

( ) ( ) 022 ≥− kdistwd  Eq. 8.18

 

where wd is the deadband around the reference orbit. 
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• The westerly point of the current orbit, must be within the deadband, and moreover 
with a certain offset with respect the west limit of the deadband. This offset is 
computed in the calculation of the initial guess (initial value of the size of in-plane 
manoeuvres to start the Optimisation) that will be explained hereafter. A tolerance will 
be applied around this offset, and the offset of the westerly point of the spacecraft orbit 
will be forced to be within this tolerance. 

0≥++− ldisttoloffsetwd  

( ) 0≥−−−− ldisttoloffsetwd  
Eq. 8.19

 

These last equations will define the inequality constraints of the optimisation problem. 

8.7.4 Partial Derivatives of the Function to be Optimised 

The function to be optimised is stated in equation Eq. 8.16.The partial derivatives of such 
function with respect the optimisation variables jVΔ  can be calculated as follows: 

( )
( )

( )
( )∑

= Δ∂
∂

=
Δ∂
∂ I

i j

i
i

j V
distdist

V
f

1

2  Eq. 8.20

 

Now the partial derivative of the deviation with respect the optimisation variable can be 
calculated as follows: 

( ) ( )
j
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∂
∂
⋅

∂
∂
⋅

∂
∂

⋅
∂

∂
=

Δ∂
∂

r

r

r

r

r

r

r

r  Eq. 8.21

 

In the graphic below is depicted the parameters involved in previous equation. 
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The calculation of this partial derivatives proceeds as follows: 
• The partial derivative of the deviation idist  with respect to an state vector ixr  is 

calculated as: 

( )

( )

( )

( )

⎥
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⎥
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∂
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∂
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∂

∂
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This previous partial derivatives: 

( )
j

i

x
dist
∂

∂ , ( )
j

i

y
dist
∂

∂  and ( )
j

i

z
dist
∂

∂ , 

can be evaluated by finite differences, applying an infinitesimal change in the state 
vector ixr , and calculating the change in deviation idist . 

• The partial derivative of one state vector with respect another state vector: 

la

i

x
x
r

r

∂
∂  

when there is no manoeuvre in between, is calculated in the propagator integrating the 
variational equations. 

• The partial derivative of the state vector after a manoeuvre laxr  with respect to the state 
before manoeuvre lbxr  is the identity matrix, when considering impulsive manoeuvres. 

• The partial derivative of the state vector after a manoeuvre jaxr  with respect the size of 
the manoeuvre jVΔ  can be evaluated taking into account that for impulsive manoeuvres 
the following relation is held: 

⎥
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⎥
⎥
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Therefore: 
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which is a vector with its first third components are zero, and the second third 
represents the manoeuvre direction, which for fixed attitude manoeuvres is a known 
vector. 

8.7.5 Partials Derivatives of the Constraints 

The equality constraints (Eq. 8.17) are related with the optimisation variables through the linear 
equations (Eq. 8.13, Eq. 8.14 and Eq. 8.15). Therefore the partial derivatives are calculated as 
follows: 
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α

ωλ  Eq. 8.22

 

The inequality constraints (Eq. 8.18 and Eq. 8.19) are functions of the deviation idist . Their 
partial derivatives with respect to the optimisation variables are: 
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−=−
Δ∂
∂ 222

 Eq. 8.23

 

And these partial derivatives of the deviation of the orbit with respect the size of the in-plane 
manoeuvres are calculated as indicated previously in equation Eq. 8.21. 
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8.7.6 Initial guess computation 

In order to save iterations in the optimisation, it is advisable to provide an initial guess value of 
the optimisation variables. To compute these initial values, equations Eq. 8.12, Eq. 8.13, Eq. 
8.14 and Eq. 8.15) are used. The problem has degrees of freedom and therefore, firstly some 
additional constraints must be included, just to solve the linear system. Obviously these new 
constraints will not be taken into account in the optimisation problem. These new constraints 
will be obtained considering additional Earth Points to be overflown, which are derived from 
the idealised behaviour of the spacecraft in the deadband. 

The variation of the deviation of the spacecraft with respect the reference ground track, is 
mainly dominated by the air drag. In some cases when the air drag is small the impact of the 
inclination variations becomes more significant (see ref. [R19.]). An idealised cycle is defined 
such that the deviation of the spacecraft at equator with respect the reference ground track 
corresponds with the easterly deadband. Subsequently this deviation will vanish and increase 
up to the westerly deadband, to vanish again and increase up to the easterly deadband, as 
depicted in the following figure. 

time
dist

Deadband
Reference Ground Track

Idealised cycle

dt

wd

East Limit

West Limit

A

B

C

D

λΔ

 
This can be obtained increasing the initial semi major axis above its nominal value (A), such 
that the air drag causes a Westward drift in ground track at equator. When the semi major axis 
reaches the nominal value, the spacecraft is in the West limit of the deadband (B). 
Subsequently, when the semi major axis decays below its nominal value the air drag causes a 
Eastward drift. When spacecraft reaches the East limit (C), it would be the time to perform a 
semi major axis raising manoeuvre. 

This idealised cycle can be approximated by a parabola, since the change in longitude is 
calculated at first approximation by the equation: 
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ωλ  Eq. 8.24

 

The change in semi-major axis can be approximated by: 

t
dt
daa Δ=Δ  

Therefore, the change in longitude, that is equivalent to a change in the deviation with respect 
the reference ground track, is a quadratic function in time. 

Based in Eq. 8.24 the parameter dt can be calculated. This parameter defines the idealised cycle 
for a prescribed deadband of width 2wd. 

iR
dt
daV

Va
iFJ

awddt
iR

wd

ER
R

EE sin3cos4

4
sin

2

32 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⇒=Δ
ω

λ  
Eq. 8.25

 

In previous equation the only unknown parameter is the variation of the semi major axis with 
respect time, 

dt
da  

which depends mainly on the air drag. To calculate accurately this parameter the orbit has to be 
propagated for a period of time. This period will coincide with the time necessary to calculate 
also the two average eccentricity vectors necessary for the frozen eccentricity vector constraint. 
The semi major axis ia  will be approximate using the least squares method: 

∑∑∑ =+
i

ii
i

i
i

i tatt βα 2  

∑∑∑ =+
i

i
ii

i at 1βα  

α and β are calculated solving previous linear equations system, and obviously: 

α=
dt
da  

The quadratic idealised cycle is calculated constraining the parabola to pass through points (A), 
(B) and (C), and becomes: 
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wdt
dt
wdt

dt
wddist +−=

42 2
2  Eq. 8.26

 

Now the time of this idealised cycle (relative to the time of point (A)), must be corresponded 
with the current time of the optimisation problem. For such purpose the deviation (dist) of the 
orbit with respect the ground track after the sequence of manoeuvres amt  shall be calculated. 
By using equation Eq. 8.16 it is possible calculate the corresponding time for (idist) and then 
establish the relation between the time scale of the idealised cycle and the time of the 
optimisation problem. 

Subsequently as many points of the ground track as degrees of freedom of the problem will be 
selected. The time for such points will be subsequent to amt . The longitude and latitude of these 
points will be corrected by the predicted deviation at the corresponding time given by Eq. 8.16. 

Now considering the new constraints (Earth points previously calculated to be overflown at 
calculated prescribed time), the linear system of equations (Eq. 8.22, Eq. 8.23, Eq. 8.24 and Eq. 
8.25), can be solved and an initial value of the size of the in-plane manoeuvres can be derived. 

Notice that this initial guess is as good as the calculated idealised cycle and equations Eq. 8.12, 
Eq. 8.13, Eq. 8.14 and Eq. 8.15 approximate respectively the real behaviour of the spacecraft in 
the deadband and the variations in longitude, eccentricity vector, etc, caused by in- plane 
manoeuvres. The first one is as good as the parameter: 

dt
da  

(mean value of the variation of semi major axis versus time) approximates the mean of the real 
evolution of this parameter versus time. It is clear that strong fluctuations of the semi major 
axis around the mean value will lead to a worse fitting of this idealised cycle to the real one, 
and therefore a degradation of the quality of the initial guess calculated. 
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9 RENDEZVOUS 

9.1 Introduction 

The rendezvous problem is the one defined as the calculation of timing and characteristics of 
the manoeuvres, to reach a certain state vector or orbital elements at a prescribed time, from the 
current spacecraft state. These manoeuvres shall be according to a manoeuvre model and be 
calculated considering an optimisation criteria and a set of constraints to be fulfilled. Therefore 
special attention must be paid to all of these items, in order to create an optimisation tool as 
generic as possible that can be applied to a different missions. 

The optimisation problem shall be solved using the simplex method. For such purpose it is 
necessary to express the function to be minimised, as well as all equality and inequality 
constraints as a linear functions of the optimisation variables, and moreover it is obligatory that 
the optimisation variables are always greater equal than zero. The optimisation variables shall 
be the module of the delta-v to be applied. Moreover the mid-time of the manoeuvre is also an 
important parameter to be determined in the optimisation process. 

Because of the cost function and constraints are linearised with respect a reference, the 
optimisation will consist of several iterations until convergence, to eliminate non-linear effects. 
For each iteration the reference around which to linearise the problem is the solution from 
previous one. Therefore it is clear that an initial guess is required to start the iterative process. 

 

9.2 Manoeuvres Modelling 

The rendezvous problem shall have to consider different types of the manoeuvres. The first 
classification would be impulsive or finite thrust manoeuvres. Both types are to be supported 
by the rendezvous. The first one have been already explained in section concerning Earth 
Observation, where they are used, therefore this section will explain the second type. 

In absence of air drag force, the rocket equation becomes: 

∫ ∫−−=Δ
2

1

2

1

sin1 t

t

t

t

dtgTdt
m

V γ  

where the first term of previous equation represents the increment in velocity due to a thrust 
profile provide by the thruster, and the second one represents the gravity losses. Therefore in 
order to obtain a certain VΔ  the manoeuvre should last a time according to previous equation. 
This fact has to be taken into account in the orbital propagation, and also in the optimisation 
process. Now the partial derivatives of the state after the manoeuvre with respect to the VΔ  
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can be calculated assuming a series of impulsive manoeuvres during the time of the manoeuvre 
as depicted in following figure: 

1
a

1
b

2
b

2
a

n
b

n
a

tman. start man. end
 

where the subscript b denotes before impulsive manoeuvre and a after manoeuvre. The global 
VΔ  shall be equally distributed (can be also be done distributing the VΔ  according to the 

thrust profile) between all impulsive manoeuvres. Therefore the partial derivative can be 
approximate by the following expression: 
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Therefore accounting for the well known relations for the impulsive case: 
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it becomes: 
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Now the Now the manoeuvres can be performed in a well known attitude (fixed attitude case), 
or the attitude can be also be calculated as a result of the optimisation process (turn & burn 
case). The first type shall be considered in the rendezvous problem, and the second one are not 
described in the current formulation, although they can be included subsequently as an 
extension of the current problem, changing slightly its formulation. 

For manoeuvres in which the spacecraft is changing the attitude concurrently the formulation 
of the problem would be more appropriate to be done in a system in which the manoeuvre is 
fixed (orbital system, body fixed, etc.), rather than the inertial system. In this case the 
transformation matrix to translate position and velocity from one to another are to be 
considered. 
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9.2.1 Optimisation Criteria 

The optimisation criteria shall be to minimise the global fuel consumption or VΔ  required for 
the manoeuvre sequence, respectively for finite thrust or impulsive manoeuvres. 

Therefore the cost function can be formulated in terms of VΔ  as follows: 

∑
=

Δ=
I

i
iVC

1
 

or formulated in terms of fuel consumption for finite thrust manoeuvres as: 

∑
=

Δ
=

I

i ex

i

i
V

V
C

1
 

where 
ii spex IgV 0=  is the exhaust velocity at the time of the manoeuvre iVΔ . 

 

9.2.2 Constraints 

The target to be achieved is expressed as a set of orbital elements or state vector to be achieved 
at prescribed time. This will be considered as equality constraints that shall be expressed as a 
linear function of the optimisation variables. The formulation of these constraints is as follows: 

( ) ( ) ( )00 VV
V
fVfTVfT Δ−Δ
Δ∂
∂

+Δ=⇒Δ=  

and accounting for ( )00 VfT Δ= , results in: 

00 V
V
fTTV

V
f

Δ
Δ∂
∂

+−=Δ
Δ∂
∂  

where T  is the target to be achieved, 0T  is the value of the target parameters at the target time 
in previous iteration, VΔ  is the value in current iteration and 0VΔ  is the value in previous 
iteration. 

The function f is obtained linearising around the reference as: 

( ) ∑
=

Δ
Δ∂
∂

+=Δ=
I

i
i

i

V
V
TTVfT

1
0  

Moreover the rendezvous problem shall take into account a set of constraints, such as: 
• Thruster performance, thruster configuration shall be taken into account in the manoeu-

vre modelling. 
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• Orbit manoeuvre location and operational constraints shall be taken into account in the 
time discretisation, as well as attitude modes of the spacecraft and platform constraints 
in the potential manoeuvres for each manoeuvre opportunity as explained in next 
section. 

9.2.3 Time Discretisation. Manoeuvre Opportunities 

For the simple method, the manoeuvres can only occur at discrete times. Each of one is called 
manoeuvre opportunity. They shall be grouped in a set of three consecutive manoeuvre 
opportunities. These groups will be defined at the first iteration such that will contain the initial 
manoeuvre sequence suggested. The rest of groups can be, for example, equally distributed in 
the gaps. 

time

V2Δ ViΔV1Δ

group of three manoeuvre 
opportunities

 
From iteration to iteration the number of these groups of manoeuvre opportunities will remain. 
Moreover the group of manoeuvre opportunities in which the size of the manoeuvres is zero 
remains at the same time, whilst the ones with at least one manoeuvre opportunity with size of 

iVΔ  different than zero will be shifted to be centred in the new manoeuvre time. 

Now for each manoeuvre opportunity, all the allowed VΔ  attitude are to be considered. 
Therefore considering n groups of manoeuvre opportunities and m allowed VΔ  attitude the 
number of optimisation variables become to mn××3 . It is clear that in order to compute 
accurate the time of the manoeuvre the discretisation should be as fine as possible, thus 
increasing the number of variables. Moreover if the number of allowed delta-v attitude is very 
big (i.e. turn & burn manoeuvres), the number of optimisation variables can not be managed 
efficiently by the simplex method. Therefore it is clear that other formulation of the problem is 
to be done in case of turn & burn manoeuvres. 

9.2.4 Manoeuvres Calculation 

To calculate the value of the iVΔ , the simplex method shall be applied, well suited for the 
linear optimisation problem. This method is described in RD-15. 

An important property of the solution of a linear optimisation problem is that the number of 
non-zero variables iVΔ  is equal or less than the number of active constraints. Therefore from 
iteration to iteration, from the mn××3  optimisation variables are different than zero at a 
maximum of K active constraints. 
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9.2.5 Manoeuvres Combination 

As mentioned previously, at each iteration a number of iVΔ  different than zero are obtained. 
Mathematically it is possible to obtain these iVΔ  in the same manoeuvre opportunity group, 
and even at the same manoeuvre opportunity in case that several manoeuvre attitude are 
allowed. Clearly it does not have too much physical sense. In that case the manoeuvres with 
same attitude can be combined into a weighted manoeuvre, with size equal to the sum of sizes 
and the manoeuvre time a weighted balance between them. At next iteration the corresponding 
manoeuvre opportunity group shall be centred around this new time, as explained in previous 
section. 
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10 GNSS DATA PROCESSING 

10.1 GNSS Observation Equations 

Because GNSS data processing is one of the key capabilities within NAPEOS some basic 
information regarding the GNSS observations will be given in this chapter. We will, however, 
only review the most important aspects of the observation equations for GPS. For more 
information we refer to the open literature, e.g., Leick, RD-43.  
 
Let us use the following notation: 
k   Index of a particular receiver 
i  Index of a particular transmitter 
t  Signal reception time (GPS time) 
tk  Reading of the receiver clock at signal reception time 
δk   Error of the receiver clock at time t with respect to GPS time 
tk - δk  The signal reception time t 
τ  Signal travelling time between satellite and receiver 
δi  Error of the satellite clock at time t – τ  w.r.t. GPS time 

)(trk
r   Position of receiver Kat signal reception time 

)( τ−tr ir  Position of receiver Kat signal emission time t – τ   

δi
k  Geometrical distance between satellite i at signal emission time t – τ and 

receiver k at signal reception time t. 

 

GNSS systems provide different observations. Most commonly used are the code observations, 
also called pseudo ranges. However, for high accuracy applications we make use of the so-
called carrier phase observations. These are based on measuring the phase of the carrier that is 
used to transport the codes from the satellite transmitter to the receiver antenna. 

 

10.1.1 Code Observation Equation 

Using the known codes provided on the GNSS carriers, the GNSS receivers measure the 
pseudo range observations. These are called pseudo ranges since on the receiver side the clock 
error is unknown and thus the measurement is not a pure range observation as in the case for 
Satellite Laser Ranging (SLR) observations. The observation equation may be written as: 
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)))()(()( i
k

i
Fk ttctP δτδ +−−+=  

Using the geometrical distance δi
k the code observation equation, in its simplest form may be 

written as: 
i

k
i
k

i
Fk cctP δδρ −+=)(         10.1 

Pi
Fk  Is the code measurement at frequency F (in meters) 

Note that the terms i
k cc δδ ,  both depend on the frequency F due to the different locations of 

the phase centres of both transmitter and receiver antennae. Also interfrequency biases may be 
present. 

10.1.2 Carrier Phase Observation Equation 

The GNSS receiver measures the difference between two phases. The one phase transmitted by 
the GNSS satellites the other generated in the receiver. The observation equation may be 
written as: 

i
Fk

i
FFk

i
Fk nttt +−−= )()()( τφφψ  

)(ti
Fkψ   Phase measurement at epoch t and frequency F (in cycles) 

)(tFkφ   Phase of the signal generated by the receiver oscillator at reception time t 

)( τφ −ti
F  Phase of the signal generated by the satellite oscillator at emission time t – τ   
i
Fkn   Unknown integer number of cycles, the so-called initial phase ambiguity 

Using a Taylor series development truncated after the terms of first order we may rewrite this: 
i
FkF

i
FFk

i
Fk nfttt +⋅+−= τφφψ )()()(  

Here fF is the frequency of the carrier signal. Taking into account the receiver clock error δk 
and the satellite clock error δi the phase difference may be written as: 

F
i

k
i
FFk ftt )()()( δδφφ −=−  

The observation equation is then given by: 
i
FkFF

i
k

i
Fk nfft +⋅+−= τδδψ )()(  

Multiplying this equation by the wavelength λF we obtain the phase observation equation: 
i
FkF

i
k

i
k

i
Fk ncctL λδδρ +−+=)(        10.2 
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10.1.3 Measurement Delays 

Phase measurements and code pseudo-ranges are affected by both, systematic and random 
effects. Let us mention, e.g., satellite orbit errors, clock errors, propagation effects, receiver 
clock errors, relativistic effects, antenna phase centre variations, and multipath. Let us address 
three effects, namely tropospheric and ionospheric refraction, and the relativistic effect. 
 
Ti

k   Tropospheric refraction, i.e., the signal delay due to the neutral (i.e., the non-
ionized) part of the Earth’s atmosphere. It is important that the tropospheric refraction, in the 
GHz region, does not depend on the frequency and that the effect is the same for code and 
phase measurements (units: meters) 
 
Ti

k   Ionospheric refraction, i.e., the signal delay respectively phase advance due to 
the free electrons in the Earth’s atmosphere. The ionosphere is a dispersive medium for 
microwave signals, which means that the refractive index for GPS signals is frequency-
dependent (units: meters) 
 
δi

k   Relativistic correction. The atomic frequency standards in the GNSS satellites 
are “affected” by general (gravity) and special relativity (the satellite’s velocity). The 
predominant portion of these relativistic effects is constant and, due to their common height, 
common to all GNSS satellites. The effect is that the clocks in orbit appear to run faster, for 
instance for GPS this would be about 40 seconds per day. This constant part is corrected for by 
adjusting the frequency of the oscillators of the GPS satellites prior to launch by -0.00455 Hz. 
The remaining part of the effect, caused by the eccentricity of the orbit, is often called the 
periodic relativistic effect (unit: seconds) 
 
The periodic relativistic effect is not commonly used in the GNSS observation equations 
because it is satellite-dependent and therefore cancels in the single difference between stations. 
However, it is important if stations and/or satellite clocks are estimated, e.g., when applying 
undifferenced processing techniques and for absolute navigation. The effect, which may reach 
up to about 50 ns (15 m), is easily computed by the formula: 

2

)()(2))(sin()()()(
c

trtrtEtetaFt
ii

i
r

&rr
⋅⋅−

=⋅⋅⋅=δ  

Where F is a fundamental constant given by: 

m
s

c
GMF 10

2 104428.42 −⋅−=
⋅−

=  

Where: 

GM  Gravitational constant of the Earth 

c  Velocity of light 

a  Instantaneous semi-major axis of the satellite orbit 



 
NAPEOS 
Mathematical Models and Algorithms 

Document No:  

Issue/Rev. No: 

Date : 

Page : 

DOPS-SYS-TN-0100-OPS-GN 

1.0 

5-NOV-2009 

133 

 

 

e  Eccentricity of the satellite orbit 

E  Eccentric anomaly of the satellite 

)(),( trtr ii &rr  Geocentric position and velocity vector of the satellite i, respectively. 

 

Taking into account these three effects the observation equations 10.1 and 10.2 for two 
different frequencies and both measurements (code and phase) may be refined as: 
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10.2 GNSS Observation Differences 

In GNSS data analysis it has become very common to form linear combinations and/or to 
generate difference between observations to reduce or eliminate some of the measurement 
delays or to reduce the number of unknown parameters. 

Differences between the observations are usually formed to eliminate parameters, especially 
the receiver and satellite clocks and also the unknown phase ambiguities. For this purpose one 
can form single-, double-, and triple-differences. Differences that can be made are: 

• Between stations. The difference between two (almost) simultaneous observations by 
two stations observing the same GNSS satellite. In this difference the satellite specific 
terms are (almost) perfectly eliminated, in particular the satellite clock and the 
relativistic delay (δi

r and δi). But also satellite specific biases are eliminated. 

• Between satellites. The difference between two (almost) simultaneous observations by 
one station observing two different GNSS satellites. In this difference the station 
specific terms are (almost) perfectly eliminated, in particular the station clock (δk). But 
also other station specific biases are eliminated. 

• Between epochs. The difference between two observations from one station observing 
one GNSS satellites on two different epochs. In this difference the initial phase 
ambiguity is eliminated. But also the constant receiver-transmitter biases are 
eliminated. 
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By using one of these differences a single differenced observation is formed, thus 3 different 
single differences are possible. By using two of these differences, two different ones of course, 
a double differenced observation is formed. There are also 3 different double difference 
observations possible. By using all three differences a triple differenced observation is formed. 
Only one triple difference combination may be formed. 

If no differences are formed of the GNSS observations one typically calls this undifferenced or 
zero-difference processing. 

Each difference, including the undifferenced one, has its pro’s and con’s. In NAPEOS we 
almost always used the undifferenced approach although the single and double difference 
processing should be possible. 

 

10.3 GNSS Linear Combinations 

GNSS signals are transmitted on different frequencies. This allows making different linear 
combinations of the independent signals from the different carriers. Currently only two 
frequencies are used by all GNSS systems but in the near future three frequencies will be used. 
The use of multiple frequencies was driven by the fact that the ionospheric delays are 
frequency dependent. With observations on two different frequencies the delay caused by the 
ionospheric refraction may be computed (to the first order) and removed from the observations. 
However, some more interesting linear combinations exist which we will briefly describe here. 

With the advent of three frequencies and different observations on each of the frequencies 
much more linear combinations will become feasible. Some are very interesting as they, 
theoretically, should offer the almost instantaneous integer ambiguity resolution by using a 
technique called “triple frequency integer ambiguity resolution”. However, this is currently 
beyond the scope of this document. 

Here we limit ourselves to the linear combinations currently used in NAPEOS: 

• Ionosphere-free Linear Combination (LC) 

• Melbourne-Wubbena Linear Combination (MW) 

• Wide-lane Linear Combinations (WL) 

• Geometry-free linear combination (Iono) 

• Single frequency Linear Combination (Graphics) 

 

Linear combinations can be made on any difference level of the observations. Also linear 
combinations can be made out of a combination of code and phase observations. 

In its most general form a linear combination of two code and two phase observations on 
different frequencies, LPLC, may be written as: 
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2121 PPLLLPLC ⋅+⋅+⋅+⋅= δγβα        10.4 

Similarly a linear combination of only two phase observations on different frequencies, LLC, 
may be written as: 

21 LLLLC ⋅+⋅= βα          10.5 

One thing one should bear in mind is that there is a “price to be paid” when forming these 
linear combinations. This price is the increase of the noise of the observations. For the phase 
only linear combination the noise of combined observation may be expressed as: 

0
22 σβασ ⋅+=

LCL
 

Here we have assumed, for simplicity, that the original observations, L1 and L2, had the same 
noise, σo. 

 

10.3.1 Ionosphere-free linear combination 

The ionosphere-free linear combination is the one most widely used in GNSS processing and 
consequently also in NAPEOS. The large advantage here is that the effect of the ionosphere is 
removed, at least to the first order. The second order effect is at the few millimetre level only 
and can (still) be neglected. Nevertheless, in recent years models have been developed to 
account for the second order ionosphere effects. 

For the Ionosphere-free linear combination we use 10.5 with the following values for α and β: 
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−
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−
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Leading to the following observation equations for code and phase respectively: 
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−

=⋅−
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=  

 

It should be pointed out that this linear combination does not have true wavelength. However, 
when in ambiguity fixing using the widelane to derive the difference between the number of 
cycles on L1 and L2 in a second step the ionosphere-free linear combination is used to resolve 
the true number of cycles on L1 and L2. In this step the ionosphere-free linear combination is 
often referred to as “narrowlane” combination. The term “narrow” in this case comes from the 
fact that the (artificial) wavelength of this linear combination for GPS is only 109 mm.  
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10.3.2 Melbourne-Wubbena linear combination (MW) 

The Melbourne-Wubbena linear combination is widely used for observation screening and for 
integer ambiguity resolution. It is a combination of code and phase measurements which results 
in a combined measurement with a relatively long wavelength (e.g. 860 mm for GPS) and a 
noise that is lower than that of the individual code measurements. In fact, the combination is 
such that all information is lost and only an ambiguity and noise remains! All geometry, 
clocks, and ionosphere effects are removed! So if good code measurements are available this 
linear combination makes screening the data for cycle slips and outliers very easy as that it 
easily allows the detection of small cycle slips and outliers, e.g. at the 1 to 2 cycle level (1 to 2 
m level). Because of this functionality it is also perfectly suited to estimate the integer value of 
the widelane ambiguities in the integer ambiguity resolution procedures. 

For the Melbourne-Wubbena linear combination we use 10.4 with the following values for α, 
β, γ, and δ: 
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Leading to the following observation equation: 

)(1)(1
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−

=  

 

10.3.3 Widelane linear combination (WL) 

The widelane linear combination is interesting for ambiguity resolution because just like the 
Melbourne-Wubbena combination it has a very long wavelength of 860 mm. This is also the 
reason why the wideline and the Melbourne-Wubbena linear combinations cause for some 
confusion. However, contrary to Melbourne-Wubbena the widelane combination uses phase 
only and it still contains the full geometry information and thus also the clock, troposphere, and 
ionospheric effects. Thus its use for ambiguity resolution is mainly on short(er) baselines 
where the ionosphere, and to a lesser extend the geometry, effects cancel out to a certain extent 
in the differencing. The widelane combination of the code observations does not really serve 
any purpose. 

For the widelane linear combination we use 10.5 with the following values for α and β: 
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−
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−
= βα  

Leading to the following observation equations for phase: 
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)(1
2211

21

LfLf
ff

LWL ⋅−
−

=  

 

 

10.3.4 Geometry free linear combination (IONO) 

The geometry free linear combination, as the name says, cancels out all the geometry 
information leaving only, or mainly, the ionosphere effects. Thus this observation is ideally 
suited, and most commonly, used for the estimation of the state of the ionosphere. It is also 
well suited for the cleaning of undifferenced data.  

For the geometry free linear combination we use 10.5 with the following values for α and β: 

11 −== βα  

Leading to the following observation equations for phase: 

21 LLLIONO −=  

 

10.3.5  Single frequency combination (Graphic) 

This linear combination is of particular interest for space applications where the use of dual 
frequency receivers is too costly in terms of consumption of spacecraft resources. In case of 
single frequency code and phase observations this combination allows to eliminate all the 
ionospheric effect, but at the cost of having an ambiguity and more noise then a pure carrier-
phase combination. Nevertheless, this combination is very helpful for low flying satellites that 
with single frequency receivers that still are significantly effected by the ionosphere. 

For the single frequency linear combination we use 10.4 with the following values for α, β, γ, 
and δ: 

011 ==−== δβγα  

Leading to the following observation equation, called “Graphic”: 

2
11 PLLPGraphic

+
=  
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10.4 Ambiguity fixing for GNSS estimation 

It has been proved, that fixing the ambiguity estimates to their real integer values can improve 
the accuracy of the estimation process involving GNSS measurements and parameters (see RD-
33 and RD-34). 

 

10.4.1 Basic Ambiguity Resolution Concept 

Integer ambiguity resolution can only be performed on double differenced ambiguities. Only in 
the double differenced data the uncalibrated delays in both the transmitters and the receivers 
are cancelled out. Thus only the double difference ambiguities may be considered to be 
integers.  
 

The basic principle of our integer ambiguity resolution scheme is the following: 
1 Baseline level 

1.1 Form all double difference Melbourne-Wubbena widelane ambiguities 

1.2 Sort and fix the Melbourne-Wubbena widelane ambiguities according to their 
fixing probability 

1.3 Form the corresponding narrowlane ambiguities 

1.4 Sort the ambiguities according to their fixing probability 

1.5 Select the independent set of fixable narrowlane ambiguities 

2 Network level 

2.1 Sort all fixable ambiguities from the baseline level according to their fixing 
probability 

2.2 Select the independent set of fixable ambiguities 

3 (Re)solve the normal equation system 

4 Next iteration or finish. 

 

10.4.2 Baseline Level 

10.4.2.1 Forming the Melbourne-Wubbena widelane double difference ambiguities 

The first step in our ambiguity resolution is to build the Melbourne-Wubbena double difference 
ambiguities. To save computation time compared to the network method of Blewitt, RD-32, we 
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will from the double difference ambiguities per baseline and we will limit the baseline length to 
a certain maximum. The maximum baseline length should be user definable and typical values 
will be around 4000 to 6000 km.  

For the formation of the double difference (DD) ambiguities it would be good to ensure that the 
double difference ambiguity parameters have at least the equivalent of 3 double difference 
observations. Only DD-ambiguities with more than 3 observations should be considered 
candidates for fixing. However, since in Napeos it may be difficult to have and/or gather the 
number of double difference observations per double difference ambiguity, we will base the 
selection of the ambiguities on the information contained in the normal matrix. The normal 
matrix gives, in principle, equivalent information.  

In this first step all possible, including redundant ones, DD-ambiguities on the selected 
baseline will be formed. Possible DD ambiguities are those ambiguities that have a non-zero 
value in their correlation field in the normal matrix. So only if all four involved undifferenced 
ambiguities are correlated a DD-ambiguity may be formed from them. Going through all 
possible double difference combinations and selecting only the valid one will give us the 
double-difference operator (dw). This double difference operator forms the DD-ambiguities and 
their variances according to the following equations. This double difference operator will have 
rows on which there are four ones two with a positive sign and two with a negative sign. 

u
ww

dd
w bdb =  

T
w

u
ww

dd
w dσdσ =  

Where: 
u
w

dd
w b,b  are the double differenced and undifferenced ambiguity, respectively. 

u
w

dd
w σ,σ  are the double differenced and undifferenced variance, respectively. 

The undifferenced ambiguity and its variance follow from the Melbourne-Wubbena data. The 
double differenced ambiguities and their variances follow from the above formula.  
 
10.4.2.2 Sorting and fixing the Melbourne-Wubbena widelane ambiguities 

The Melbourne-Wubbena widelane DD-ambiguities should now be fixed depending on their 
fixing probability. For this purpose we will us the probability function 0P : 
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b Widelane DD-ambiguity estimate in widelane cycles 

I Nearest integer of widelane DD-ambiguity estimate 

σ  Widelane DD-ambiguity sigma in widelane cycles 

All those widelane DD-ambiguities with a fixing probability larger then a user defined value 
will be resolved. Typical values would be between 0.99 and 0.9999. For safety purposes it will 
be necessary to define a minimal value of σ  or a maximum value of Ib − . A good solution 

for this is to take 
2

Ib −
=σ  if the initial value of σ  is smaller than this value. 

Note: On the ESOC Sun platform the “erfc” function is available in the Fortran libraries. 
Furthermore, for the summation over “n” it should be enough to go to n=6. 

 
10.4.2.3 Forming the narrowlane double difference ambiguities 

As the next step we now have to generate the narrowlane double difference ambiguities. Of 
course only those narrowlane DD-ambiguities for which the widelane ambiguity resolution was 
successful should be considered in this step. So the double-difference operator derived for the 
widelane DD-ambiguities should be updated so that only the fixable DD-ambiguities are 
generated. This will give us the double-difference operator for forming the ionosphere free 
DD-ambiguities (dc) and their variances: 

u
cc

dd
c bdb =  

T
c

u
cc

dd
c dσdσ =  

Where  
u
c

dd
c b,b  are the double differenced and undifferenced ambiguity, respectively.  

u
c

dd
c σ,σ  are the double differenced and undifferenced variance, respectively. 

The subscript (c) is used to identify that these ambiguities are based on the ionosphere free 
linear combination.  

The narrowlane DD-ambiguity and its variance may now be derived from the widelane and the 
ionosphere free ambiguities. They can be written as: 
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Where f1 and f2 are the frequencies of the L1 and L2 carrier-phases, respectively. 

Now the fixing probability is computed for all narrowlane DD-ambiguities. For this purpose 
we will use the same probability function as for the widelane ambiguities. Only those 
narrowlane DD-ambiguities that satisfy the, user defined, probability requirement are resolved. 
This gives us c

dd
c

dd
n d,b,b  

 
10.4.2.4 Sorting the fixed ambiguities 

We now have a set of ambiguities for which both the widelane and the narrowlane ambiguity 
were resolved. Consequently we have to sort these fixed DD-ambiguities depending on their 
fixing probability. For this sorting we could use just the narrowlane fixing probability or the 
combined fixing probability based on the product of the widelane and narrowlane fixing 
probabilities. For the initial design the product of the widelane and narrowlane fixing 
probability will be used. 

 
10.4.2.5 Select the independent ambiguities 

Because we formed all possible DD-ambiguities we may, and will, have several redundant 
ambiguities in our sorted list of fixed DD-ambiguities. We therefore now have to select the 
independent subset of fixed DD-ambiguities from the sorted list. We start with the DD-
ambiguity with the largest fixing probability. The next DD-ambiguity is checked for 
independency. If it is independent it will be added to the list of fixed DD-ambiguities otherwise 
it will have to be rejected. In this way we have to cycle through all selected DD-ambiguities. 

For the independency check the modified Gram-Schmidt method is used. The standard 
algorithm has bad numerical properties, which show in this problem due to the dimensions of 
the vectors to check. 

 

10.4.3 Network Level 

10.4.3.1 Standard algorithm 

Sorting the ambiguities 
After going through all the possible baselines in the previously described manner we will have 
a large set of fixable DD-ambiguities. Because we have made all possible baselines we again 
may, and will, have some redundant ambiguities in the set of fixable ambiguities. These 
ambiguities are now again sorted based on their fixing probability. Note that for this purpose 
we reuse the same fixing probability value that was determined on the baseline level! 

 

Select the independent set 
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Similar as on the baseline level we again start with the DD-ambiguity with the largest fixing 
probability. The next DD-ambiguity is checked for independency. If it is independent it will be 
added to the list of fixed DD-ambiguities otherwise it will have to be rejected. In this way we 
cycle through the complete list of ambiguities. 

For the independency check the Gram-Schmidt method is used.  

The selected double differences will give us the double difference operator (dc). However, the 
number of selected double differences (m) will always be lower than the number of 
undifferenced ambiguities (n). For later usage our double difference operator matrix must be an 
invertible matrix (size n x n). To achieve this dc is filled with those undifferenced ambiguities 
which satisfy the independency check. Thus we add ones on the diagonal of dc until we can not 
find any more independent undifferenced ambiguities. This will give us an invertible matrix dc 
of size n x n. 

 
10.4.3.2 Simplified algorithm 

The standard algorithm requires a lot of CPU time to complete. The main bottleneck is the 
check of the linear independence. These are basically operations on a matrix of dimension the 
number of ambiguities, which for a normal set-up is more than 3000. To improve this aspect, a 
simplified algorithm was developed. It basically reduces the dimension of the vector set, by 
extending the check on the baseline level. Once all the baselines are computed independently 
of each other, they are sorted depending on the number of fixed ambiguities (first in the list the 
one with more fixed ambiguities). To ensure independency among baselines, they are picked 
from this sorted list and the ones independent with respect to the ground stations are chosen. 
This check is performed by keeping track of the stations used by the baselines as the sorted list 
is followed. A baseline is considered independent if any of its stations is not yet used, on the 
other side if both stations have been already used, the baseline is not independent. The resulting 
list of independent baselines (the one used after the first iteration) will be used for the iterative 
independence check. 

Iterative independence check 

Per baseline there will be, except in the first baseline, three types of independent vectors: 
o The first one will contain the independent and the fixed ambiguities of previous 

baselines that are used by the current baseline. These ambiguities will be named 
reference ambiguities. They will be added to the base, and hence form the first 
independent vector of the baseline of the base. These elements will define the 
independence status of the DDs. 

o The second one will contain the independent DDs of the current baselines (i.e. 
independent with respect to the DDs themselves, and to the reference ambiguities). 

o The third one will contain the independent individual ambiguities used by the current 
baseline, taking into account the dimension of the baseline, the reference ambiguities 
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and the independent DDs. They are needed to generate a full-rank base (i.e. its 
dimension is equal to the number of ambiguities used by the baseline). 

For the first baseline, the first type does not exist. Applying the iterative independence check 
per baseline, taking into account the above described types of ambiguities, the space dimension 
of each check is reduced to the number of ambiguities used by the baseline, speeding up the 
whole process dramatically. Using the concept of reference ambiguities, the independence of 
the DDs of different baselines is guaranteed when they are put together and used for 
constraining when solving the normal equation system. 

10.4.4 Solving the Normal Equation System 

After going through both the baseline and network steps previously described we have 
determined the integer resolved value of the double difference ionosphere free ambiguities 
( dd

cb ) and we also have determined the double difference operator (dc) (not a square matrix, 
just the linear independent DDs). With this information we now go back to our normal 
equation system to compute our “ambiguity fixed” solution. 

The equations describing the independent DDs (i.e. the equalities of the DDs to the delta 
needed to make them integer, already computed in previous steps, when checking the iterative 
independence check) are used as constraints to the normal equation system, so the integer DD 
value is ensured, and new values of parameters are obtained. So starting from the NEQ system 
and the constraints: 
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Being x2 the ambiguities used by the remaining DDs and Δdd the delta to be applied to the 
original DDs to make them integer in cycles. Now to constraint the system, the constraining 
equations will be added to the NEQ system as observations, hence the resulting system is: 
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Being σ a small value to give the observation/constraint a strong weighting so it is correctly 
taken into account. Care must be paid when choosing this value to avoid numerical problems 
when solving the system. 

Right afterwards, the NEQ system (without constraints) is modified to have as new initial 
values for ambiguities the ones obtained after solving the constrained system. The new values 
are the input to start the next iteration. 
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10.4.5 Iteration in the Ambiguity Fixing 

It has been shown that ambiguity resolution improves the results of GPS solutions by a factor 
of two compare to non resolved solutions. However, it is has also been shown that ambiguities 
are easier to solve over short baselines than over long baselines. This depends on the quality of 
the solution. So it therefore makes sense to start ambiguity fixing using mainly short baselines. 
In a next iteration the solution will have improved thanks to the fixed ambiguities on the short 
baselines. Thus the ambiguity fixing will be easier and more successful for the long baselines 
as well. We therefore envision doing a couple of iterations where we increase the maximum 
baseline length from iteration to iteration. However, it might also be possible to get similar 
results by just iterating since the sigma’s, and therefore the fixing probability, of the remaining 
ambiguities will improve. However, in the case of the simplified algorithm, and to ensure 
consistency in the ambiguities fixed in following iterations this modification in the base length 
is not applied. The inconsistency could appear if a previously computed baseline is not taken 
into account in the following iteration, then it is possible that a fixed ambiguity cannot be fixed 
anymore. To avoid this possibility the baselines used in the algorithm are always the same and 
computed during the first iteration, so their length is fixed to the initial values. 

 

The iteration scheme stops if any of the following cases occurs: 
� No more ambiguities remaining to be resolved 

� No additional ambiguities are resolved in the last iteration 

� The user defined maximum number of iterations is reached 

The parameter estimates are written to the normal output files, following the NEQ file format. 
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11 EARTH ORIENTATION PARAMETERS 

11.1 Introduction 

This section describes the handling of the Earth Orientation Parameters in Napeos. Note that in 
the following convention is used to distinguish between EOP and ERP: 

• EOP = Earth Orientation Parameters: The full set of parameters needed to describe 
the orientation of the Earth in the celestial reference frame. So this includes X-pole, Y-
pole, UT1-UTC, but also the two Nutation angles. 

• ERP = Earth Rotation Parameters. The subset of three angles describing position of 
the Earth rotation axis on the Earth surface: X-pole, Y-pole, and UT1-UTC. 

Of course three angles would be sufficient to describe the orientation of the Earth in the 
celestial reference frame. However, there are a couple of reasons for using 5 angles rather than 
two. The two main reasons being: 

• Because the dynamics of the Earth are so well known, nutation (and precession) can be 
calculated within seconds of arc over periods of many decades. Whereas the other three 
angles can not be predicted very accurately. So there is no great need to estimate the 
nutation angles.  

• Space geodetic observations are not sensitive to the two nutation angles because we can 
not separate them from a rotation of the satellite orbit. Nutation angles are rotations of 
the (quasi) Inertial Earth-fixed axis. Space geodetic observations are, however, sensitive 
to the nutation rates! In fact, the same holds for UT1-UTC where space geodetic 
observations are only sensitive to the rate of UT1-UTC and not UT1-UTC itself 
because of its 1:1 correlation with the ascending node of the satellite orbit(s) and a Z-
rotation the whole reference frame as defined by the observing stations. 

The EOPs are used to transform from the Celestial Reference System (CRS) reference frame to 
the Terrestrial Reference System (TRS) reference frame and vice-versa. The CRS we use in 
Napeos is the J2000 reference frame as defined in the IERS Conventions (2003), RD-7. The 
TRS we use is the International Terrestrial Reference System (ITRS) as also defined in the 
same IERS Conventions. To realise the ITRS one has to use the International Terrestrial 
Reference Frame (ITRF) solutions. At the moment the latest ITRF solution is the ITRF2005. A 
new ITRF should become available by the end of 2009 and will be called the ITRF2008 (the 
year reflects the date of the latest data that was used in the ITRF realisation). 

The transformation from CRS to TRS is, as given in the IERS Conventions: 

 [CSR] = Q(t) R(t) W(t) [TRS] 

Where Q(t), R(t), and W(t) are the transformation matrices arising from the motion of the 
celestial pole in the celestial system, from the rotation of the Earth around the axis of the pole, 
and from polar motions respectively.  
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The CRS to TRS transformation in Napeos follows the IERS Conventions and uses the 
software as provided by the IERS. The IERS2003 conventions give three methods to 
implement the software (method 1, 2a, and 2b). From these methods Napeos has followed the 
method 1 which is in consistent with the IAU 2000A Precession-Nutation model. The main 
difference with the method 2 is that this method uses the new (X, Y, s, θ) transformation rather 
then the classical, equinox-based, transformation (dψ, dε). This is important to note because the 
IERS now provides two different pole files; one pole file that follows the new IAU2000A 
transformation and one that follows the classical transformation.  

Another issue which is important to know is that the IERS software turned out to be very 
computational intensive, in particular the NU2000A subroutine. It was therefore needed to 
“buffer” the information that is required to perform the transformation. So when the EOP 
information is initialized in Napeos a buffer is filled which stores the required information. 
This makes things a bit more complicated, as we will see later, but it reduced the CPU time 
from 10 hours to 1 hour. So it was a very much needed change. 

11.2 EOP handling in Napeos 

11.2.1 Conversion of IERS EOP information 

The IERS provides several different sets of EOP information. The basic content of the different 
products is very similar. For detailed information on the different IERS products please visit 
the IERS web site at: http://www.iers.org 

All IERS EOP basically contain the same information: X-pole, Y-pole, UT1-UTC, and the 
celestial pole offset dψ and dε for the IAU1980 model, or dX, dY for the IAU2000 model. 

The difference between the sets is the availability, prediction time span, and consistency. 

In GNSS we typically use the so called “Rapid data and predictions” data also called the IERS 
“Bulletin A” and which is being generated at the United States Naval Observatory (USNO). 
These are the files that we download from USNO. There are two variants of these files one 
following the IAU1980 (“finals.daily” and “finals.data”) and the other the IAU2000 
“finals2000A.daily” and “finals2000A.data”. 

Another interesting set of products are the long term Earth orientation data. This data series, 
which is generated at the “Observatoire de Paris”, is referred to as the IERS C04 series. The 
latest release of this series is called the EOP 05 C04. The special value of this series is that it 
should be fully consistent with the ITRF2005. However, the differences between the Bulletin A 
and the C04 series are really small. Also from the C04 series there are two variants, one 
following the IAU1980 and the other the IAU2000. 
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In addition to these EOP series the IERS is also responsible for the leap seconds. These are 
disseminated using the so called Bulletin C. USNO keeps the leap seconds in a special file 
called “tai-utc.dat” which is easier to read by a computer. 

For our GNSS work we routinely download the IERS Bulletin A files finals2000A.daily, 
finals2000a.data, and tai-utc.dat from USNO and convert them to the Napeos internal format 
using the Napeos program IersConv. The IersConv utility can also convert the IERS EOP 05 
C04 files but this is not done routinely. The Napeos internal EOP file contains X-pole, Y-pole, 
UT1-TAI, dX, and dY. 

 

11.2.2 NAPEOS EOP initialisation 

When a NAPEOS program needs EOP information the information is initialized in the 
following way: 

• DBcb_Init: General initialisation routine 
• DBcb_ReadEop: This routine reads the Napeos internal EOP file and stores it in the 

“eop” array 
• ErpNutInit: This routine buffers the ERP and the Nutation and Precession information. 

It calls the DBcb_InitEop in two loops. The first loop is to fill the ERP buffer. The 
second loop is to fill the Nutation buffer.  

• DBcb_ErpBuf: This is the ERP buffer that contains: time, X-pole, Y-pole, UT1-TAI. 
The buffering interval is 1800 seconds (0.5 hours). 

• DBcb_NutBuf: This is the nutation buffer that contains: time, the precession nutation 
matrix, the precssion matrix, the nutation matrix, and dX, and dY. The buffering 
interval is 3600 seconds (1 hour). 

 

As mentioned before the EOP buffering was needed to save a significant amount of CPU time. 
The buffering interval was chosen after careful testing that the actual behaviour of the 
parameters is accurately reproduced by the interpolation. The most critical points are the 
“boundary” values, i.e., those epochs for which we have external (IERS) values. This is 
because when generating the buffer the available IERS values (typically one every day at 
midnight) are interpolated linearly. Then the different model contributions are added to these 
linearly interpolated values.  The models are, e.g., the IAU2000A nutation model, the sub-daily 
polar motion, the UT1 to UT1r correction etc. etc. The resulting values are stored in the buffer 
and later interpolated quadratically. So at the epochs very close to the IERS epoch (typically 
midnight) some “side effects” of the linear versus quadratic interpolation are visible. However, 
they are well below the accuracy level and thus are unproblematic. 

In any case a lot of time is saved by the buffering. Originally it was only done for the nutation 
and precession because of the computational load of the NU2000A routine. Later on it was also 
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done for the ERP values because it turned out that the sub-daily ERP model and the UT1-
UT1R corrections also use a significant amount of CPU time. 

 

11.2.3 NAPEOS EOP USAGE 

When a Napeos program needs the EOP information, e.g., to perform a transformation the 
values in the EEP and/or Nutation buffers are used. To get the values for the correct epoch the 
values in the buffers are interpolated quadratically using the 3 points closest to the time of the 
request. 

The Nutation buffer interpolation is done in the function: 
• InterpolNutBuf in module ATcb_conv 
• This function is only used by the routines 

o ATcb_SetMatrix 
o ATcb_TleVec 

• InterpolErpBuf in module ATcb_conv 

 

The ERP buffer interpolation is done in the function: 
• InterpolErpBuf in module DBcb_data 
• This function is only used by the subroutine 

o DBcb_IntEop 

 

The nutation information is only needed when making a transformation from CRS to TRS or 
vice versa. Therefore, it is only needed in the ATcb module which deals with these 
transformations. So it is used in the “ATcb_SetMatrix” subroutine for “normal” 
transformations.  

The EOP information is needed in several places. So in order to access and interpolate the 
DBcb_ErpBuf values to the required epoch the subroutine DBcb_IntEop is available. For 
programmes where the EOP information was not buffered the subroutine DBcb_InitEop is 
available.  

11.3 NAPEOS ERP Estimation in Bahn 

11.3.1 Introduction 

ERP parameters may be estimated in Bahn. The ERP estimation functionality is: 
• Estimate several sets of ERP parameters per Bahn run. This is interesting for multi-day 

solutions like used for SLR and DORIS. For GNSS processing it allows to estimate 
ERPs with a higher time resolution. 
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• The reference time is the middle of the estimation interval of the ERP set rounded to the 
nearest UTC hour of the day. All three parameter times, start-, middle-, and end-time, 
are stored in the NEQ file. 

• The a priori values are computed for the derived reference time. After the estimation the 
a priori ERP values, as stored in the DBcb_eop array in DBcb_data are updated using 
the estimates. If the propagation time interval is larger then the determination interval 
the estimated ERP values are extrapolated using the estimated offset and rates. 

• We using EopUpd to generate an EOP file there is a small issue that the times used in 
the NAPEOS EOP files have an hourly resolution and are given in UTC. A typical 
GNSS run uses a time window from 0:00 hours in GPS time meaning a 15 second time 
offset in UTC time. Thus the pole values will have a small discrepancy.  

• When using the ERP values from NEQ files they values are used for the exact times 
and everything is fully consistent. 

 

When estimating the ERP parameters there are several subroutines that are being used all 
located in the module DBcb_Data: 

1. DBcb_SetEop and DBcb_FillEop: These subroutines get the apriori ERP values for 
the reference time by linear interpolation of the values in the DBcb_EOP array. This 
subroutine is used only to initialize the ERP estimates. 

2. DBcb_PutEop: This subroutine updates the value in the DBcb_eop array using the 
estimated values. On first call it replaces the original array with the new array aligned 
to the estimation interval times. 

3. DBcb_UpdEop: Is used to update the values after the solution is generated. 
4. DBcb_ExtEop: Is used to extrapolate the EOP file to cover the full “propagation” 

interval in case it is longer then the “determination” interval. 

 

11.4 Using the ERP Estimates 

11.4.1 Available ERP Output 

Bahn outputs the ERP estimates in the asci parameter output file, and in the NEQ output files. 
Since the ERP parameters are a fundamental part of the terrestrial reference frame we will most 
likely always include them in the NEQ file from Bahn. UpdErp can convert the NEQ values to 
a proper NAPEOS ERP file and thus an additional/separate output file format does not seem to 
be necessary at present in NAPEOS.  

The ERP files in IGS format, which are to be submitted with our orbit products, are generated 
by the NAPEOS program Par2Sinex. This program converts a Napeos NEQ file to the SINEX 
format and at the same time it can generate an ERP file in the format required for the IGS. 
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11.4.2 Orbit Fit and Orbit Prediction 

When making an orbit fit through orbits given in the TRS it is of importance to use ERP 
information that is consistent with the orbit. The most critical factor is the UT1-UTC rate or 
LOD. But also the X-pole and Y-pole rates may cause significant effects. However, for NRT 
the knowledge of UT1-UTC is the most inaccurate one and therefore most prone to errors.  

If we take our IGS Ultra-rapid products as example we have to make sure that the ERP 
information we use is taken from the same solution as the SP3 files that are used. This is done 
by the program EopUpd that puts together the ERP information just like OrbUpd puts 
together the SP3 information. EopUpd reads NEQ files and NAPEOS EOP files and merges 
the ERP information contained in those files and writes the output in the Napeos EOP file 
format. 

The program EopUpd has the following abilities: 
• Merge the ERP information form different NEQ files into a merged ERP file containing 

those ERP values which belong to the corresponding merged SP3 orbit file.  
• Optionally: make the ERP values continuous at the “boundaries”. If making the ERPs 

continuous this means that basically only the drift of the parameters are used. 
• In case of continuous ERP output the “reference” value should be defined. 
• The program should get missing information (e.g. dX and dY) from the “normal” ERP 

input file. 

Whether or not the ERP file should be continuous at the boundaries of the estimated ERP 
values or not depends on what the larger error source is. Is the reference frame realisation or 
the ERP estimation the dominant error source? Based on some experimentation it has become 
clear that the X- and Y-ERP values should be used as estimated. For UT1UTC and LOD it has 
become clear that LOD should be used but not UT1UTC. For UT1UTC a reference values 
should be selected, e.g. a well estimated valued from the NAPEOS EOP file and this value 
should be “integrated” using the LOD estimates. 

 


