l l' F D Ω GMST + π PERIOD ainj aopj (hours) µas) µas) P1+ 0 0 -2 2 -2 1 24.066 0.6 -1.2 S1+ 0 -1 0 0 0 1 24.000 -5.2 4.9 K1+ 0 0 0 0 0 1 23.935 1.4 0.7 ψ1+ 0 1 0 0 0 1 23.870 -0.5 0.5 S2+ 0 0 -2 2 -2 2 12.000 -2.8 0.6 S2- 0 0 2 -2 2 -2 -12.000 2.8 -0.6 Delaunay arguments (IERS Conventions 2000, from Simon et al., 1994, Astron. Astrophys. 282, 663-683): Mean anomaly of the Moon : l = 134°.963 402 51 + 1 717 915 923.2178" t + 31".879 2 t2 + 0".051 635 t3 - 0".000 244 70 t4 Mean anomaly of the Sun : l'= 357°.529 109 18 + 129 596 581.0481" t - 0".553 2 t2 - 0".000 136 t3 - 0".000 011 49 t4 F = L -Ω with L mean longitude of the Moon F = 93°.272 090 62 + 1 739 527 262.8478" t - 12".751 2 t2 - 0".001 037 t3 + 0".000 004 17 t4 Mean elongation of the Moon from the Sun : D = 297°.850 195 47 + 1 602 961 601.2090" t - 6".370 6 t2 + 0".006 593 t3 - 0".000 031 69 t4 Mean longitude of the ascending node of the Moon : Ω = 125°.044 555 01 - 6 962 890.543 1" t + 7".472 2 t2 + 0".007 702 t3 - 0".000 059 39 t4 where t is measured un Julian Centuries of 36525 days of 86400 seconds of Dynamical Time since J2000.0. Rotation angle in arcseconds : Greenwich Mean Sidereal Time + 180° GMST + π = (67310.54841 + (876600 * 3600 + 8640184.812866) t + 0.093104 t2 - 6.2 10-6 t3 ) 15 + 648000.0 where t is measured un Julian Centuries of 36525 days of 86400 seconds of Dynamical Time since J2000.0.