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1 Introduction

This note presents the derivation of an empirical model for the mantle oscillation associated with the
retrograde free core nutation (RFCN).

2 Least-Squares Model

I use the daily combined series IERS EOP 05 C 04 (referred to as C04 in the following) from January
1st, 1984 computed at the IERS Earth Orientation Center at the Paris Observatory (Gambis & Bi-
zouard 2007). C04 series provides daily values for celestial pole offsets dX and dY referred to the MHB
expansion. I fix the period of the free motion to the estimated value in the MHB work, let −430.21 days
in a spaced-fixed frame of reference, and I consider only changes in the phase. Moreover, the space
motion of the figure axis due to the RFCN is considered as circular, ignoring any possible asymmetry in
the distribution of mass in the core.

The computation is based on a weighted least-squares fit of a circular term plus a constant to the
complex-valued quantity dX + i dY :

dX + i dY = Aei σt + X0 + i Y0, (1)

where A is the complex amplitude, σ the RFCN frequency, and t is the time measured from J2000.0.
This leads to:

dX = Ac cosσt − As sin σt + X0, (2)

dY = Ac sin σt + As cosσt + Y0,

allowing the estimation of 4 parameters: Ac and As and the constant offsets X0 and Y0. The offsets
account for the long-term variations appearing in the nutation residuals and are not physically related to
the core nutation. The contribution of the RFCN only to the celestial pole offsets is given by:

XRFCN = Xs sin σt + Xc cosσt, (3)

YRFCN = Ys sinσt + Yc cosσt,

where:
Xs = Yc = As, Xc = −Ys = Ac. (4)

To account for the time variability of the amplitude and the phase, the estimates are done over a
NL-length sliding window displaced by ND. The tabulated epoch for each window is the middle date.

3 Size and Displacement of the Sliding Window

To determine the most suitable values for NL and ND, I proceed with a synthetic data consisting of a
damped, free motion (taken from any previous RFCN empirical model, for instance the one of Malkin &
Terentev 2007 derived by a wavelet analysis of VLBI data) on which I add a gaussian noise of variance
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Table 1: Coefficients of the amplitude of the free motion as fitted on July 2007.

year mjd Xc, −Ys Xs, Yc ±

µas µas µas

1984 45700 78.87 -125.13 18.93
1985 46066 -94.06 -128.40 12.32
1986 46431 -238.06 -154.23 14.25
1987 46796 -262.91 -152.30 13.65
1988 47161 -201.75 -27.67 14.20
1989 47527 -191.80 -87.82 11.94
1990 47892 -201.02 -60.12 9.18
1991 48257 -147.87 26.27 7.92
1992 48622 -118.88 40.70 6.51
1993 48988 -111.93 9.64 7.51
1994 49353 -120.51 34.38 6.99
1995 49718 -123.15 39.28 7.67
1996 50083 -143.22 17.15 7.41
1997 50449 -127.36 49.06 7.50
1998 50814 -82.19 30.73 7.63
1999 51179 -19.96 -35.48 6.33
2000 51544 29.07 -111.01 5.95
2001 51910 86.98 -123.91 7.36
2002 52275 80.07 -97.29 7.13
2003 52640 109.90 -54.14 4.65
2004 53005 131.46 -10.18 4.55
2005 53371 157.76 -15.35 3.23
2006 53736 160.41 -14.18 3.08
2007 54101 148.90 34.30 4.31

∼200 µas. The fitted free motion is then compared to the original (noise-free) signal in terms of rms
and correlation coefficient. The procedure is repeated a thousand times to get a reliable statistics and
for 200 < NL < 1, 000 days and 200 < ND < NL days. Fig. 1 reports on the obtained correlation
and rms for the X-component (the results for the Y-component are similar). It appears that the best
fit (high correlation coefficient and low rms) is generally obtained for a window length around or larger
than 2 years. The correlation coefficient and the rms lie in the red and green/blue regions, respectively.
For my model, I choose NL = 2 years (i.e., around 730 days, fluctuating to account for leap years) and
ND = 1 year. Thus I can get one estimate per year every January 1st. Note that the rms for this couple
of values is around 40 µas. It is about three times smaller than the uncertainty on VLBI data and it
is significantly higher than the formal error of the least-squares fit (see next section). It constitutes a
pessimistic evaluation of the error on the model. Also, one has to note that this rms results from an
estimation on the full time span, although the ‘local’ amplitude of the noise varies significantly between
the early VLBI and after 2000.

4 Final Results and Prediction Error

Fig. 2 shows the superimposition of the C04 data set and of the fitted free motion. As an example, this
is the result of a fit done on the C04 data set running till July 2007. The numerical values of the yearly
amplitudes are reported in Tab. 1. It can be noticed that the formal error on these amplitudes varies
between 20 µas in the early years down to 3–5 µas for the most recent years. As already mentioned, the
reader must keep in mind that a more realistic error estimated through statistical tests might replace
these formal errors.

A Fourier spectrum is shown on Fig. 3. The spectral peak associated with the free motion is centered
around −0.84 cycle per year and appears as a broad peak (and even as a double peak) because of phase
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Figure 1: Simulation for testing the sensitivity of the least-squares fitting algorithm to NL and ND.
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Figure 2: C04 data set and free motion as fitted on July 2007.
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Figure 3: Fourier spectrum of the C04, the free motion and the difference.

variations, detected as variations of the period by the Fourier transform (see Vondrák et al. 2005). The
peak showing up around the zero-frequency is the signature of long-term time variations in the nutation
offsets that are not treated in this modeling. After removing the free motion from the C04 data set, the
remaining power is statistically not significant at the RFCN frequency.

The mean prediction error has been estimated through the average of a thousand predictions over
past time intervals (see Fig. 4). It appears that a second order polynomial fits very well the prediction
error, with a postfit rms of 0.2 µas, whereas a linear regression leads to a postfit rms of 3 µas. However,
since the formal error on the amplitude of the free motion remains larger than 3 µas, the choice of the
linear regression to account for the degradation of the error with time seems sufficient. For the routine
implementation, I adopt the value of 0.1325 µas/day for the degradation in forward or backward predictive
mode starting from any given epoch.

5 Availability of the Results and Updates

A web site providing the user with the model coefficient values, plots, and ASCII files giving time series
of free motion and a 1-year prediction is made available on the IERS web site at:

ftp://hpiers.obspm.fr/eop-pc/models/fcn/index.html

A Fortran 77 subroutine is also available on the web site. Given a date (in modified julian day), it returns
the values of XRFCN and YRFCN in µas as well as their formal errors. The amplitude variation between
two nodes (epochs) is modeled by a piecewise linear function. This routine has been used for producing
the free motion time series shown on Fig. 3. Use the syntax below:

c INPUT

double precision mjd ! modified julian date

c OUTPUT
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Figure 4: Mean prediction error brought by the fitted model of free motion and polynomial fits.

double precision X,Y ! contribution on X and Y (microas)

double precision dX,dY ! error on the contributions (microas)

c SUBROUTINE CALL

call fcnnut(mjd,X,Y,dX,dY)

The update frequency can be twice a year. Unless the C04 data set is strongly modified (e.g., due
a complete reanalysis after changing the IERS combination strategy), the amplitudes for past years will
remain the same or very close. Only the coefficient relative to the present year can be affected significantly.
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