Oceanic tides cause diurnal
and semidiurnal components in the polar motion. Table here below comes from
the IERS 2010 conventions, Chapter
8, Table 8.2a/b. It includes 71 periodic components (41 diurnal terms, 30 semidiurnal
terms) under the form :
Δy = Σi Hi sin ξi + Ki cos ξi xi = a1 (GMST + π) + a2 l + a3 l' + a4 D + a5 F + a6 Ω. Unit for Fi, Gi, Hi, Ki is microarsecond. |
GMST+π l l' F D Ω Doodson PERIOD Fi Gi Hi Ki (days) (sin) (cos) (sin) (cos) 1 -1 0 -2 -2 -2 117.655 1.2113611 0.0 0.9 -0.9 -0.1 1 -2 0 -2 0 -1 125.745 1.1671262 0.1 0.6 -0.6 0.1 2Q1 1 -2 0 -2 0 -2 125.755 1.1669259 0.3 3.4 -3.4 0.3 1 0 0 -2 -2 -1 127.545 1.1605476 0.1 0.8 -0.8 0.1 σ1 1 0 0 -2 -2 -2 127.555 1.1603495 0.5 4.2 -4.1 0.5 1 -1 0 -2 0 -1 135.645 1.1196993 1.2 5.0 -5.0 1.2 Q1 1 -1 0 -2 0 -2 135.655 1.1195148 6.2 26.3 -26.3 6.2 1 1 0 -2 -2 -1 137.445 1.1136429 0.2 0.9 -0.9 0.2 RO1 1 1 0 -2 -2 -2 137.455 1.1134606 1.3 5.0 -5.0 1.3 1 0 0 -2 0 0 145.535 1.0761465 -0.3 -0.8 0.8 -0.3 1 0 0 -2 0 -1 145.545 1.0759762 9.2 25.1 -25.1 9.2 O1 1 0 0 -2 0 -2 145.555 1.0758059 48.8 132.9 -132.9 48.8 1 -2 0 0 0 0 145.755 1.0750901 -0.3 -0.9 0.9 -0.3 T01 1 0 0 0 -2 0 147.555 1.0695055 -0.7 -1.7 1.7 -0.7 1 -1 0 -2 2 -2 153.655 1.0406147 -0.4 -0.9 0.9 -0.4 1 1 0 -2 0 -1 155.445 1.0355395 -0.3 -0.6 0.6 -0.3 1 1 0 -2 0 -2 155.455 1.0353817 -1.6 -3.5 3.5 -1.6 M1 1 -1 0 0 0 0 155.655 1.0347187 -4.5 -9.6 9.6 -4.5 1 -1 0 0 0 -1 155.665 1.0345612 -0.9 -1.9 1.9 -0.9 χ1 1 1 0 0 -2 0 157.455 1.0295447 -0.9 -1.8 1.8 -0.9 π1 1 0 -1 -2 2 -2 162.556 1.0055058 1.5 3.0 -3.0 1.5 1 0 0 -2 2 -1 163.545 1.0028933 -0.3 -0.6 0.6 -0.3 P1 1 0 0 -2 2 -2 163.555 1.0027454 26.1 51.2 -51.2 26.1 1 0 1 -2 2 -2 164.554 1.0000001 -0.2 -0.4 0.4 -0.2 S1 1 0 -1 0 0 0 164.556 0.9999999 -0.6 -1.2 1.2 -0.6 1 0 0 0 0 1 165.545 0.9974159 1.5 3.0 -3.0 1.5 K1 1 0 0 0 0 0 165.555 0.9972695 -77.5 -151.7 151.7 -77.5 1 0 0 0 0 -1 165.565 0.9971233 -10.5 -20.6 20.6 -10.5 1 0 0 0 0 -2 165.575 0.9969771 0.2 0.4 -0.4 0.2 Ψ1 1 0 1 0 0 0 166.554 0.9945541 -0.6 -1.2 1.2 -0.6 Φ1 1 0 0 2 -2 2 167.555 0.9918532 -1.1 -2.1 2.1 -1.1 TT1 1 -1 0 0 2 0 173.655 0.9669565 -0.7 -1.4 1.4 -0.7 J1 1 1 0 0 0 0 175.455 0.9624365 -3.5 -7.3 7.3 -3.5 1 1 0 0 0 -1 175.465 0.9623003 -0.7 -1.4 1.4 -0.7 SO1 1 0 0 0 2 0 183.555 0.9341741 -0.4 -1.1 1.1 -0.4 1 2 0 0 0 0 185.355 0.9299547 -0.2 -0.5 0.5 -0.2 OO1 1 0 0 2 0 2 185.555 0.9294198 -1.1 -3.4 3.4 -1.1 1 0 0 2 0 1 185.565 0.9292927 -0.7 -2.2 2.2 -0.7 1 0 0 2 0 0 185.575 0.9291657 -0.1 -0.5 0.5 -0.1 ν1 1 1 0 2 0 2 195.455 0.8990932 0.0 -0.6 0.6 0.0 1 1 0 2 0 1 195.465 0.8989743 0.0 -0.4 0.4 0.0 --------------------------------------------------------------------- 2 -3 0 -2 0 -2 225.855 0.5484264 -0.5 0.0 0.6 0.2 2 -1 0 -2 -2 -2 227.655 0.5469695 -1.3 -0.2 1.5 0.7 2N2 2 -2 0 -2 0 -2 235.755 0.5377239 -6.1 -1.6 3.1 3.4 μ2 2 0 0 -2 -2 -2 237.555 0.5363232 -7.6 -2.0 3.4 4.2 2 0 1 -2 -2 -2 238.554 0.5355369 -0.5 -0.1 0.2 0.3 2 -1 -1 -2 0 -2 244.656 0.5281939 0.5 0.1 -0.1 -0.3 2 -1 0 -2 0 -1 245.645 0.5274721 2.1 0.5 -0.4 -1.2 N2 2 -1 0 -2 0 -2 245.655 0.5274312 -56.9 -12.9 11.1 32.9 2 -1 1 -2 0 -2 246.654 0.5266707 -0.5 -0.1 0.1 0.3 ν2 2 1 0 -2 -2 -2 247.455 0.5260835 -11.0 -2.4 1.9 6.4 2 1 1 -2 -2 -2 248.454 0.5253269 -0.5 -0.1 0.1 0.3 2 -2 0 -2 2 -2 253.755 0.5188292 1.0 0.1 -0.1 -0.6 2 0 -1 -2 0 -2 254.556 0.5182593 1.1 0.1 -0.1 -0.7 2 0 0 -2 0 -1 255.545 0.5175645 12.3 1.0 -1.4 -7.3 M2 2 0 0 -2 0 -2 255.555 0.5175251 -330.2 -27.0 37.6 195.9 2 0 1 -2 0 -2 256.554 0.5167928 -1.0 -0.1 0.1 0.6 λ2 2 -1 0 -2 2 -2 263.655 0.5092406 2.5 -0.3 -0.4 -1.5 L2 2 1 0 -2 0 -2 265.455 0.5079842 9.4 -1.4 -1.9 -5.6 2 -1 0 0 0 0 265.655 0.5078245 -2.4 0.4 0.5 1.4 2 -1 0 0 0 -1 265.665 0.5077866 -1.0 0.2 0.2 0.6 T2 2 0 -1 -2 2 -2 272.556 0.5006854 -8.5 3.5 3.3 5.1 S2 2 0 0 -2 2 -2 273.555 0.5000000 -144.1 63.6 59.2 86.6 R2 2 0 1 -2 2 -2 274.554 0.4993165 1.2 -0.6 -0.5 -0.7 2 0 0 0 0 1 275.545 0.4986714 0.5 -0.2 -0.2 -0.3 K2 2 0 0 0 0 0 275.555 0.4986348 -38.5 19.1 17.7 23.1 2 0 0 0 0 -1 275.565 0.4985982 -11.4 5.8 5.3 6.9 2 0 0 0 0 -2 275.575 0.4985616 -1.2 0.6 0.6 0.7 2 1 0 0 0 0 285.455 0.4897717 -1.8 1.8 1.7 1.0 2 1 0 0 0 -1 285.465 0.4897365 -0.8 0.8 0.8 0.5 2 0 0 2 0 2 295.555 0.4810750 -0.3 0.6 0.7 0.2 Delaunay arguments (IERS Conventions 2000, from Simon et al., 1994, Astron. Astrophys. 282, 663-683): Mean anomaly of the Moon : l = 134°.963 402 51 + 1 717 915 923.2178" t + 31".879 2 t2 + 0".051 635 t3 - 0".000 244 70 t4 Mean anomaly of the Sun : l'= 357°.529 109 18 + 129 596 581.0481" t - 0".553 2 t2 - 0".000 136 t3 - 0".000 011 49 t4 F = L -Ω with L mean longitude of the Moon F = 93°.272 090 62 + 1 739 527 262.8478" t - 12".751 2 t2 - 0".001 037 t3 + 0".000 004 17 t4 Mean elongation of the Moon from the Sun : D = 297°.850 195 47 + 1 602 961 601.2090" t - 6".370 6 t2 + 0".006 593 t3 - 0".000 031 69 t4 Mean longitude of the ascending node of the Moon : Ω = 125°.044 555 01 - 6 962 890.543 1" t + 7".472 2 t2 + 0".007 702 t3 - 0".000 059 39 t4 where t is measured un Julian Centuries of 36525 days of 86400 seconds of Dynamical Time since J2000.0. Rotation angle in arcseconds : Greenwich Mean Sidereal Time + 180° GMST + π = (67310.54841 + (876600 * 3600 + 8640184.812866) t + 0.093104 t2 - 6.2 10-6 t3 )15 + 648000.0 where t is measured un Julian Centuries of 36525 days of 86400 seconds of Dynamical Time since J2000.0.