Combination of techniques at CC DGFI

Manuela Seitz

COL Working Group Meeting DGFI Munich 29. May 2012

Outline

- Input data
- New SINEX files
- Intra-technique combination
 - Comparison of SLR files
- Inter-technique combination

Status and changes since November 2011

	AIUB	DGFI	ESOC	GFZ	GRGS	MAO	ΟΡΑ	TUW
GPS	n2				n7			
SLR	n3 <mark>(11)</mark>	w2(11)	w1		n3			
VLBI		n2			n6	n1	n1	n2(11)
DORIS					n5			
L-P			n1	n1				
L-D			n1/n2					

New SINEX files SINEX files Nov. 2011

Information about new models and parametrizations often missed!

Seitz: Combination at the CC DGFI

Remarks on the new SINEX files

GPSGRGS: orientation constrained (n7)discussion with Sylvain in Nov. last yearone SINEX file for test purposes: okay

SLRGRGS: okay;What are the changes compared to Nov. 2011?EOP: now pwl representation with offsets at 0 h

Remarks on the new SINEX files

VLBI TUW: 11/269: 4-char. ID of WARK12m in SINEX missed

GRGS: station names related troposphere parameters (**ZBIAS**) do not correspond to the station names in block SITE/ID

OPA: discussion with Sebastien Lampert on the ITPI values given in SINEX which seem to be not reduced
→ Dan MacMillan would look at this problem in Calc/Solve

→ All NEQ provide the expected number of eigenvalues = 0 (except of [GPS/GRGS])

 $l_1^T P_{11} l_1 = l^T P l - y_2^T N_{22}^{-1} y_2$

1... remaining
 2... reduced parameters

if N_{22} is the part of the Normal quation matrix related to the parameters, which should be reduced. y_2 is the corresponding right hand side of NEQ.

(see also App. II of the new SINEX format description, which will be provided very soon by Daniela Thaller/SINEX WG)

 $l^T P l$ is needed for the computation of the a posteriori variance factor

$$v^{T} P v = l^{T} P l - y^{T} \hat{x}$$
$$\sigma = \sqrt{\frac{v^{T} P v}{n - u}}$$

 \rightarrow A large $l^T P l$ leads to large standard deviations.

Earth Orientation Parameters

dUT1

OPA (UT1-TAI) ; all the others UT1-UTC

Nutation

- only TUW provides [X,Y] representation
- GRGS/DORIS: 12-hourly resolution
- a priori values are not 0.0 (IAU2000 model values?):
 - GRGS (all techniques)
 - MAO
 - OPA
 - TUW (a priori values, but very small)

Pole

No inconsistencies

 \rightarrow EOP parameterization must be further homogenized.

GPS:	
AIUB	TROTOT (a priori=dry ZD), TGNTOT, TGETOT
GRGS	ZBIAS, TGNTOT, TGETOT
VLBI:	
GRGS	ZBIAS
TUW	TROWET (a priori=0), TGNTOT, TGETOT
DORIS	
GRGS	ZBIAS

- Consistency is needed for comparisons and combination: TROTOT, TGNTOT, TGETOT
- → All AC (GNSS; VLBI; DORIS) should provide the tropospheric parameters for the co-location sites

- ZBIAS: tropospheric bias at zenith What does it exactly mean?
- TROTOT: total tropospheric delay

 a priori value: ~ dry part
 estimated value: ~ wet part
 → the use of TROTOT with: a priori values = dry ZD would be necessary for comparisons

Corresponding gradients: TGNTOT TGETOT

ZBIAS: tropospheric bias at zenith What does it exactly mean?

COL specs

TROTOT: total tropospheric delay

- a priori value: ~ dry ZD → GPT model, GMF mapping function
- estimated value: ~ wet ZD (GMF mapping function)
- → the use of TROTOT with: a priori values = dry ZD (*GPT/GMF*) would be necessary for comparisons

Corresponding gradients:

TGNTOT

TGETOT

a priori values = 0 (or standardized values for COL)

Comparison of SLR input series

- AIUB: CONT08, CONT11
- DGFI: CONT08, (CONT11)
- GRGS: CONT08

Comparison CONT08

	RMS	Tran. [mm]	Scale [mm]
AIUB-GRGS	7 - 12	4 - 6	1 - 4
DGFI-GRGS	5 - 10	3 - 10	0 - 5
AIUB-DGFI	10	3 - 20	1 - 7

Stations with large residuals are excluded from the transformation

- Station lists are not identical
- Number of common stations 14-19

Comparison of SLR input series

Comparison CONT08: Stations with large residuals [mm]

station	code	AIUB-GRGS	DGFI-GRGS	AIUB-DGFI
Borowiec	7811	70	50	70
Riyadh	7832	30		44
Shanghai		/	/	35
Changchun	7237			40
Koganei	7308	/	/	60
Fort Davis	7406	1600	1600	
Maui	7119			50
Washington	7105	1700	1700	
Mon. Peak	7110	200	200	100
San Juan	7406	70	70	30
Arequipa	7403	3400	3400	30

 \rightarrow A SLR internal comparison/homogenization is necessary

Seitz: Combination at the CC DGFI

Comparison of SLR input series

Comparison CONT11

AIUB-DGFI (number of common stations: 20-22)

RMS: 10 mm Tran: 0-5 mm Scale: 4-7 mm

Stations with large residuals

Station	code	Max. residual [mm]
Kiev	1824	60
Potsdam	7841	30
Washington	7105	30
Arequipa	7403	30
Mt. Stromlo	7825	30

Seitz: Combination at the CC DGFI

Combination procedure at DGFI

Seitz: Combination at the CC DGFI

15

Local ties

CONT11 contains the co-location sites

- 12338 Badary GPS-VLBI
- 13420 Yebes GPS-VLBI
- 50116 Hobart GPS-VLBI (new antenna HOBART12)

for which no local ties were available so far (ITRF2008/DTRF2008).

Zuheir Altamimi provides us local vectors (with standard deviations) for Badary and Yebes.

ightarrow will be provided in the forum

Data Series

CONT11 series

Models

- ✓ Jean Michel provided the gravity field model for CONT11 → COL forum
- ✓ Ocean loading (FES2004): tabeled values from Scherneck provided by Rolf König (→ forum)
- \checkmark Atmospheric tides: Ray-Ponte model (\rightarrow COL forum or GGFC website)
- Models applied by all ACs

Parameterization

EOP

- Homogenization of EOP parameterization
 - daily piece-wise-linear representation (0h) or offset and drift
 - Nutation [X,Y]
 - Nutation parameters: correction to nutation model a priori values = 0.0
 - UT1-UTC (OPA: UT1-TAI)
 - Same a priori values and a priori interpolation

Parameterization

Troposphere

- Homogenization of troposphere parameters (microwave techniques) (GPT/GMF -> TROTOT, TGNTOT, TGETOT)
- Tropospheric parameters should be provided for all CONT08 and CONT11
 VLBI stations and the co-located GPS and DORIS stations

Solution related

- MAO: RMS w.r.t. DTRF2008 much larger than for the other VLBI contributions (20-30mm)
- OPA: standard deviations (ITPI)
- ightarrow Currently not used in the combination

Combination

- Combination of the new series
- Combination of all parameters
- Investigation of individual co-location sites
- VCE
- Pre-combined data should be included (more discussion is needed)

END

Analysis and combination procedure at DGFI

Step by step

Per technique:

- daily to weekly [GPS/AIUB]
- comparison and combination of input files

Inter-technique1:

- comparison and combination of VLBI-, SLR-, and GPS-only contributions

Inter-technique2:

 comparison and combination of intertechnique 1 and pre-combined SLR-DORIS, SLR-GPS data

Contributions: DGFI, MAO, OPA, TUW (GRGS could not be read from SINEX)

Analysis:

	A posteriori Sigma	Transformation DTRF2008 (scale)	RMS of transformation
DGFI	1.0	<= 9 mm	5 – 7 mm
MAO	20.0	20-30 mm	20-30 mm
OPA	800000.0	<= 10 mm	5 – 7 mm
TUW	1.0	<= 10 mm	5 – 7 mm

- \rightarrow DGFI, OPA and TUW are combined.
- → standard deviations of OPA very large (Itpl of 1*10^15 vs. 1*10^4 for DGFI and TUW) → contribution to combined solution is very small

Combination aspects

- Consideration of variance components is necessary
- DGFI, OPA: EOP transformed from O+D -> pwl
- Troposphere parameters (TUW): have to be stabilized
- Sources (TUW): fixed to ICRF2
- dUT1: DGFI and TUW (UT1-UTC); OPA (UT1-TAI)

 > dUT1 combined for DGFI and TUW only

 Nutation: TUW[X,Y]; DGFI and OPA [PSI, EPS]

 OPA: a priori values are not 0.0 (model values?)
 > nutation is not combined

 \rightarrow Parameterization of VLBI contributions must be further homogenized.

Combination results

RMS of similarity transformation between combined and single AC solutions

\rightarrow Offsets between the AC contributions

Combination results

RMS of similarity transformation between combined and single AC solutions

 \rightarrow NYALES20 not used in transformation: offset between DGF and TUW removed. What are the reasons? Modell differences? (\rightarrow height component)

Combination results

RMS of similarity transformation between combined and single AC solutions

→ Agreement of AC better than agreement to DTRF2008 (model differences; epoch vs. multi-year solution)

Combination results

Scale differences [ppm] derived from transformation between combined and single AC solutions (and DTRF2008)

- \rightarrow Contribution of OPA very small (due to large STD).
- → RMS of scale differences between AC comparable to comparison of combined solution and DTRF2008 (Offset: -0.5 ppb)

Combination results

Scale differences [ppm] derived from transformation between combined and single AC solutions

\rightarrow Scale is weighted mean of DGF and TUW.

29

Summary:

- Good agreement (MAO should be analyzed in detail)
- EOP parameterization must be homogenized (Nutation, dUT1)
 - DGF, MAO and OPA -> [X,Y]
 - Nutation parameters: correction to nutation model a priori values = 0.0
 - OPA -> UT1-UTC
 - Same a priori values, interpolation
- SINEX completed (GRGS)
- Standard deviations of OPA must be investigated
- What are the reasons for the disagreements between the ACs?

Contributions: AIUB, DGFI, GRGS

Analysis:

	A posteriori Sigma	Transformation DTRF2008 (tra, sc)	RMS of transformation
AIUB	0.01	<= 5 mm	15 mm
DGFI	1.3	<= 10 mm	15 mm
GRGS	0.5	<= 10 mm	15 mm

- ightarrow Homogeneous SLR input data
- \rightarrow Second week slightly worse than weeks 1 and 3

Combination aspects

- Consideration of variance components is necessary
- Geocentre coordinates (AIUB) fixed to 0.0
- EOP:
 - CODE: O+D -> pwl
 - GRGS provides pwl values at noon (cannot be transformed)
 - -> only the EOP of AIUB and DGFI are combined
 - week 3 cannot be solved if EOP are combined (ITPI) !!
 What is the reason?

Combination results

RMS [mm] of similarity transformation between combined and single AC solutions

→ Comparable RMS values, DGFI values (weeks 1 and 2) slightly larger (improved compared to first DGFI solution)

Combination results

RMS of similarity transformation between combined solution and DTRF2008

→ Comparable to RMS for single AC w.r.t. DTRF2008 (15 mm); week 1 and 2 benefit from combination

Combination results

Scale differences [ppm] between combined solution and single AC solutions

→ Agreement: 0.2 ppb (~ 1.5 mm) ; except of week 2 / DGFI

Seitz: Combination at the CC DGFI

Combination results

X-Translations [mm] between combined solution and singe AC solutions

 \rightarrow Agreement within 5.0 mm

Combination results

Y-Translations [mm] between combined solution and singe AC solutions

 \rightarrow Agreement within 2.0 mm

Combination results

Z-Translations [mm] between combined solution and singe AC solutions

→ Agreement within 5.0 mm for week 1 and 3
→ Summarizing: homogeneous SLR input data

Combination results

Translations of combined solution w.r.t. DTRF2008 [mm]

\rightarrow Agreement within 6 mm.

40

Combination results

Scale of combined solution w.r.t. DTRF2008 [ppm]

→ Agreement: 0.4 ppb (~ 2.5 mm)

Contributions: AIUB, GRGS

Analysis:

	A posteriori Sigma	Transformation DTRF2008	RMS of transformation
AIUB	0.01	datum parameters set up	7.0 mm
GRGS	2.0	datum parameters set up	6.0 mm

Combination:

RMS values (combined / single AC): 2-5 mm

RMS w.r.t. DTRF2008: 4-5 mm (Improvement compared to single AC)

 \rightarrow Good agreement

Contributions: GRGS

Analysis:

	A posteriori Sigma	Transformation DTRF2008	RMS of transformation
GRGS	1.0	datum parameters set up	10-20 mm

Combination:

 \rightarrow No intra-technique combination for DORIS

Inter-technique combination

Flowchart of weekly combination

GPS weekly NEQ +SLR weekly NEQ **DORIS** weekly NEQ ╋ ╇ ╇ **VLBI VLBI VLBI** session session session NEQ NEQ NEQ Combined weekly NEQ

Selection of local ties Max. local tie misfit : 25 mm

σ local ties 1.0 mm / component

Combination: Datum realization

Combination: Datum realization

Conservation of the origin

Translation between combined (P+R+L+D) and SLR only [mm]

 \rightarrow Good agreement between SLR only and combined solution

Combination: Datum realization

Conservation of the scale

Scale parameters between combined and VLBI/SLR only [mm]

Combination: deformation of networks

RMS values of transformation between combined and single technique solution

VLBI stations with frequent residuals of 10-20 mm: NYALES20, SVETLOE, TSUKUBA, KOKEE, WESTFORD → Mean deformation can reach more than 5mm
 SLR: Asian stations responsible for large RMS

Combination: Comparison with DTRF2008

Translations SLR, GPS: VLBI, DORIS:	-6.0 – 3.5 mm -10.0 –6.0 mm, 5.0	– 10.0 mm
Rotations		
GPS:	-0.4 – 1.5 mm	Datum realization w.r.t. DTRF2008
SLR:	-6.0 – 1.8 mm	~ 5mm per component
VLBI:	-9.0 – 7.0 mm	(GPS orientation better)
DORIS:	-11.0 – 11.0 mm	- C. I. I. I.
Scale		Iransfer into network partstranslation/rotation : up to 11 mm
VLBI:	-4.0 – 5.0 mm	- Scale: up to ~ 5 mm
SLR:	-2.3 – 1.4 mm	
GPS:	-1.6 – -2.5 mm	
DORIS:	-3.7 – -5.3 mm	

Combination: Comparison with DTRF2008

Combination: EOP

Combination of EOP (piece-wise linear at 0 h)

	pole	UT1-UTC	Nutation
GPS	AIUB+GRGS	AIUB (GRGS: UT1-TAI)	AIUB (GRGS: AV≠0)
SLR	AIUB (GRGS: pwl 12 h)	AIUB (GRGS: UT1-TAI; pwl 12 h)	/
VLBI	DGFI+GRGS+ TUW	DGFI+TUW (GRGS: UT1-TAI)	DGFI: mean epoch, no rates GRGS: AV≠0, mean epoch, no rates TUW: X,Y
DORIS	GRGS	/ (GRGS: UT1-TAI)	/ (GRGS: AV≠0)
Combined ?	yes	yes	no

Seitz: Combination at the CC DGFI

Pole coordinates (w.r.t. IERS 08 C04)

SLR week 3 cannot be solved

Pole coordinates (w.r.t. IERS 08 C04)

SLR week 3 cannot be solved

Pole coordinates (w.r.t. IERS 08 C04)

 → Outliers due to SLR contribution (AIUB values: transformation from O+D -> pwl ?)
 → Y pole shows the same effects

UT1-UTC (w.r.t. IERS 08 C04)

	WRMS
UT1-UTC	20.1 us (w/o last four values)

Seitz: Combination at the CC DGFI

Summary: to do

Input data

Correct SINEX file:

constraints, statistical information, station names (tropospheric parameters), source names, satellite names

Parameterization:

IERS2010 should be used (what about the new pole representation in the pole tide model?), Nutation -> [X,Y], UT1-UTC, same a priori values, for EOP: pwl at 0h or O+D

Combination

- Combination of all parameters
- Investigation of individual co-location sites
- VCE
- Pre-combined data should be included (more discussion is needed)

