The GFZ Integrated Solution

Rolf Koenig, Daniel Koenig

Content

Motivation The integrated approach The GFZ solution submitted Next plans

Motivation

- EPOS-OC is a multi satellite, multi observation type, multi parameter type S/W, Combination on the Observation Level is just there
- We put some efforts already in solvability, separability and accuracy of the dynamic and geometric Earth system parameters (geocenter, orientation) from the CHAMP-GRACE-GPS constellation
- Here we face the chance for comparison of coordinates, EOPs, troposphere, ..., in an international group

The Integrated Approach

Simultaneous dynamic modelling of an ensemble of
 satellites
Simultaneous solution of all orbits from an ensemble of
 tracking types

Simultaneous solution of an ensemble of parameters

Dynamic

Orbit Low degree harmonics

• • •

Geometric

Station coordinates EOPs

. . .

The Solution gfz<yy><doy>cPLcd01

GRACE-GPS constellation Observations: GPS code and phase data, GPS-constellation to GPS ground network (GPS ground) GPS code and phase data, GPS-constellation to GRACE-A and -B (GPS SST) GRACE K-band range rates, GRACE-A to -B (KRR) SLR normal point ranges, SLR ground network to GRACE-A and -B, and to GPS-5 and -6 (SLR NP) Models Gravity field EIGEN-GL04C 120x120 Short term mass variations GRACE RL04 A priori station coordinates ITRF2000/IGS2000 A priori EOPs EOP04C05

The Solution gfz<yy><doy>cPLcd01, II

Weighting

GPS	ground code	1.000 m
GPS	ground phase	0.010 m
GPS	SST code	0.700 m
GPS	SST phase	0.007 m
SLR	NPs	0.010 m
KRR		0.25 µm/s

Parameters in SINEX

Station coordinates
EOPs (polar motion, UT1-UTC)

constraint 1 m a priori
constraint 1 m equivalent a priori

The Solution gfz<yy><doy>cPLcd01, III

Processing

1-d arc
 Runtime 6 h
 6,500 unknowns
 2,800,000 observations
 2,700,000 GPS ground
 60,000 GPS SST
 17,000 KRR
 100 SLR Nps

SINEX conversion of EOP a priori constraints failed for re-scaling

IERS COL WG, Vienna, May 3, 2010

Next Plans

Re-supply SINEX with correct MATRIX_APRIORI L INFO Add CHAMP

- Add LAGEOS and LAGEOS-2
- Add altimetry satellites (new observation types: altimeter crossover, DORIS)

