Combination of Space Geodetic Techniques for ITRF computation

Manuela Seitz¹, Daniela Thaller²

¹ Deutsches Geodätisches Forschungsinstitut (DGFI) ² Astronomisches Institut Universtität Bern (AIUB)

DGFI

Workshop on combination on observation level,

21./22.10.09, Warsaw

- Differences between combination on NEQ level and on observation level
- Combination strategy at the IERS CC at DGFI
- Special aspects of the combination
 - Weighting
 - Local tie selection
 - Daily TRF
 - Troposphere combination
- New combination technologies space co-locations

Combination on NEQ level

Goal: combination of different space geodetic techniques using **consistently processed** observation data

each data type (GPS/SLR/VLBI) is processed with two special analysis softwares, but

GPS	Bernese GPS Software 5.0 @ GFZ	EPOS @ GFZ
VLBI	OCCAM @DGFI	Calc/Solve@IGG, Bonn
SLR	EPOS@GFZ	DOGS-OC@DGFI

- models and parameterizations are identical (homogenized software packages)
- combination on NEQ level ~ combination on observation level

Combination on NEQ level

Comparison of combination on NEQ and on observation level

- if analysis softwares are homogenized

NEQ level

Observation level

Consistent processing of the data using the same models and parameterization

Appropriate relative weighting of the techniques

Corrections to the **original observations** are estimated

Outlier detection and weighting of observations technique-wise	Outlier detection and weighting of observations within the combination process
A priori reduced parameter cannot be handled anymore	All parameters are available

Combination strategy at DGFI

Weighting

Necessary, because of "errors" in the stochastic models

(differences between the estimated standard deviations do not reflect the **real** precision differences)

Variance component estimation is not reliable:

- Only few common parameters (station coordinates) are available

A selection is necessary, because:

partly large differences occur between local ties and coordinate solutions from GPS, VLBI and SLR

Reasons for the differences not clear: local tie? GPS? VLBI? Changes from ITRF2005 to ITRF2008 :

- GPS: switch from relative to absolute PCV
- VLBI: change of the mean pole for pole tide correction

Two points that have to be discussed:

1. Can local ties "correct" a GPS, SLR, VLBI, DORIS derived station position?

 NO, they cannot. Discrepancies between tie and techniques will always lead to a deformation of the networks (the station with the larger formal error will be more shifted, close stations will be affected)

Local Ties are only used to connect the techniques. The **network geometry** resulting from the GPS, SLR, VLBI, DORIS **should not be changed** due to combination.

Criteria for local tie selection: deformation shall be minimized

2. If space geodetic techniques are combined, the information about the **orientation of the networks** is transferred via station coordinates and via EOP

Consistency of the ITRF: if station networks are combined but not the EOP, the resulting pole coordinates (GPS_{comb TRF}, VLBI_{comb TRF}) are not allowed to show systematic differences!

Criteria for local tie selection: pole offsets must be minimized

How to test the local ties w.r.t. the criteria?

Deformation

 RMS of 7-parameter similarity transformation between combined and single technique solution is a measure for the deformation

Pole offset

- TRF are combined, EOP series are not combined
- Offset of the two estimated pole series (GPS, VLBI) is analysed

Can other criteria corroborate the selection?

Mean common observation time

Mean standard deviation of GPS/VLBI position

Larger differences between GPS/VLBI and local tie

1

Larger standard deviations for GPS and VLBI station positions

Advantage

time variability of station positions (height) can be considered with high accuracy

Modeling of station displacement is not sufficient at some epochs.

Disadvantages

- Iong term stability and precision are not as good as for the ITRF
- EOP time series show a larger noise level
- no UT1-UTC parameters for days without contributions of VLBI

presentation by Daniela Thaller

Can the daily combined TRF benefit from an additional combination of the tropospheric parameters?

Troposphere combination

Estimated tropospheric zenith delay (wet part)

Troposphere combination

Change of station height repeatabilities

Especially stations located far away benefit from the troposphere combination.

Space co-locations

SLR observations of GNSS satellites

- via on board co-location: vector between reflector / GNSS antenna and the center of mass of the satellite
- common adjustment of orbits: SLR and GNSS
 TRF: SLR and GNSS stations
 EOP
 (in Bernese @ AIUB)
- advantage: scale can be gained from SLR

→ results are very promising

Space co-locations

SLR observations of GPS satellites

3D – Differences between local ties and GNSS - SLR TRFs

Summary

- Combination on NEQ level is a good approximation of the combination on observation level if the software packages used for the GPS, VLBI, SLR, ... analysis are homogenized
- Combination strategy at DGFI
 - Variance factors are derived empirically
 - Local tie selection is based on the
 - minimizing of pole offset and deformation of the networks
 - Daily TRF
 - station variation is approximated well, but EOP have a
 - larger noise level (presentation by Daniela Thaller)
 - benefit from troposphere combination
- Combination of SLR and GNSS via space-ties provides promising results

Troposphere combination

ΔΗ

Combination on NEQ level

GGOS-D project - a project of four German institutes

- Goal: combination of different space geodetic techniques using **consistently processed** observation data
 - Each data type (GPS/SLR/VLBI) is processed with a special analysis software, but
 - Models and parameterizations are identical (homogenized software packages)
 - Combination on NEQ level ~ combination on observation level

